Not working for me.
#5
by
ZeroWw
- opened
prompt="""
Tell me the difference between thinking in humans and in LLMs.
"""
m=f'{model_name}.{q_type}.gguf'
!./build/bin/llama-cli -no-cnv --ignore-eos -c 4096 -m /content/$m -t $(nproc) -ngl 999 -p "User: Hi\nBot:Hi\nUser: {prompt}\nBot:"
output:
load_backend: loaded RPC backend from /content/build/bin/libggml-rpc.so
load_backend: loaded CPU backend from /content/build/bin/libggml-cpu-haswell.so
build: 5662 (fb85a288) with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
main: llama backend init
main: load the model and apply lora adapter, if any
llama_model_loader: loaded meta data with 35 key-value pairs and 339 tensors from /content/OpenThinker3-7B.q8_0.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = qwen2
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.name str = OpenThinker3 7B
llama_model_loader: - kv 3: general.basename str = OpenThinker3
llama_model_loader: - kv 4: general.size_label str = 7B
llama_model_loader: - kv 5: general.license str = apache-2.0
llama_model_loader: - kv 6: general.base_model.count u32 = 1
llama_model_loader: - kv 7: general.base_model.0.name str = Qwen2.5 7B Instruct
llama_model_loader: - kv 8: general.base_model.0.organization str = Qwen
llama_model_loader: - kv 9: general.base_model.0.repo_url str = https://huggingface.co/Qwen/Qwen2.5-7...
llama_model_loader: - kv 10: general.dataset.count u32 = 1
llama_model_loader: - kv 11: general.dataset.0.name str = OpenThoughts3 1.2M
llama_model_loader: - kv 12: general.dataset.0.organization str = Open Thoughts
llama_model_loader: - kv 13: general.dataset.0.repo_url str = https://huggingface.co/open-thoughts/...
llama_model_loader: - kv 14: general.tags arr[str,4] = ["llama-factory", "full", "generated_...
llama_model_loader: - kv 15: qwen2.block_count u32 = 28
llama_model_loader: - kv 16: qwen2.context_length u32 = 32768
llama_model_loader: - kv 17: qwen2.embedding_length u32 = 3584
llama_model_loader: - kv 18: qwen2.feed_forward_length u32 = 18944
llama_model_loader: - kv 19: qwen2.attention.head_count u32 = 28
llama_model_loader: - kv 20: qwen2.attention.head_count_kv u32 = 4
llama_model_loader: - kv 21: qwen2.rope.freq_base f32 = 1000000.000000
llama_model_loader: - kv 22: qwen2.attention.layer_norm_rms_epsilon f32 = 0.000001
llama_model_loader: - kv 23: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 24: tokenizer.ggml.pre str = qwen2
llama_model_loader: - kv 25: tokenizer.ggml.tokens arr[str,152064] = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv 26: tokenizer.ggml.token_type arr[i32,152064] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 27: tokenizer.ggml.merges arr[str,151387] = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
llama_model_loader: - kv 28: tokenizer.ggml.eos_token_id u32 = 151643
llama_model_loader: - kv 29: tokenizer.ggml.padding_token_id u32 = 151643
llama_model_loader: - kv 30: tokenizer.ggml.bos_token_id u32 = 151643
llama_model_loader: - kv 31: tokenizer.ggml.add_bos_token bool = false
llama_model_loader: - kv 32: tokenizer.chat_template str = {%- if tools %}\n {{- '<|im_start|>...
llama_model_loader: - kv 33: general.quantization_version u32 = 2
llama_model_loader: - kv 34: general.file_type u32 = 7
llama_model_loader: - type f32: 141 tensors
llama_model_loader: - type f16: 2 tensors
llama_model_loader: - type q8_0: 196 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type = Q8_0
print_info: file size = 8.49 GiB (9.57 BPW)
load: special tokens cache size = 22
load: token to piece cache size = 0.9310 MB
print_info: arch = qwen2
print_info: vocab_only = 0
print_info: n_ctx_train = 32768
print_info: n_embd = 3584
print_info: n_layer = 28
print_info: n_head = 28
print_info: n_head_kv = 4
print_info: n_rot = 128
print_info: n_swa = 0
print_info: is_swa_any = 0
print_info: n_embd_head_k = 128
print_info: n_embd_head_v = 128
print_info: n_gqa = 7
print_info: n_embd_k_gqa = 512
print_info: n_embd_v_gqa = 512
print_info: f_norm_eps = 0.0e+00
print_info: f_norm_rms_eps = 1.0e-06
print_info: f_clamp_kqv = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale = 0.0e+00
print_info: f_attn_scale = 0.0e+00
print_info: n_ff = 18944
print_info: n_expert = 0
print_info: n_expert_used = 0
print_info: causal attn = 1
print_info: pooling type = -1
print_info: rope type = 2
print_info: rope scaling = linear
print_info: freq_base_train = 1000000.0
print_info: freq_scale_train = 1
print_info: n_ctx_orig_yarn = 32768
print_info: rope_finetuned = unknown
print_info: ssm_d_conv = 0
print_info: ssm_d_inner = 0
print_info: ssm_d_state = 0
print_info: ssm_dt_rank = 0
print_info: ssm_dt_b_c_rms = 0
print_info: model type = 7B
print_info: model params = 7.62 B
print_info: general.name = OpenThinker3 7B
print_info: vocab type = BPE
print_info: n_vocab = 152064
print_info: n_merges = 151387
print_info: BOS token = 151643 '<|endoftext|>'
print_info: EOS token = 151643 '<|endoftext|>'
print_info: EOT token = 151645 '<|im_end|>'
print_info: PAD token = 151643 '<|endoftext|>'
print_info: LF token = 198 'Ċ'
print_info: FIM PRE token = 151659 '<|fim_prefix|>'
print_info: FIM SUF token = 151661 '<|fim_suffix|>'
print_info: FIM MID token = 151660 '<|fim_middle|>'
print_info: FIM PAD token = 151662 '<|fim_pad|>'
print_info: FIM REP token = 151663 '<|repo_name|>'
print_info: FIM SEP token = 151664 '<|file_sep|>'
print_info: EOG token = 151643 '<|endoftext|>'
print_info: EOG token = 151645 '<|im_end|>'
print_info: EOG token = 151662 '<|fim_pad|>'
print_info: EOG token = 151663 '<|repo_name|>'
print_info: EOG token = 151664 '<|file_sep|>'
print_info: max token length = 256
load_tensors: loading model tensors, this can take a while... (mmap = true)
load_tensors: offloading 28 repeating layers to GPU
load_tensors: offloading output layer to GPU
load_tensors: offloaded 29/29 layers to GPU
load_tensors: CPU_Mapped model buffer size = 8692.21 MiB
...............................................................................
llama_context: constructing llama_context
llama_context: n_seq_max = 1
llama_context: n_ctx = 4096
llama_context: n_ctx_per_seq = 4096
llama_context: n_batch = 2048
llama_context: n_ubatch = 512
llama_context: causal_attn = 1
llama_context: flash_attn = 0
llama_context: freq_base = 1000000.0
llama_context: freq_scale = 1
llama_context: n_ctx_per_seq (4096) < n_ctx_train (32768) -- the full capacity of the model will not be utilized
llama_context: CPU output buffer size = 0.58 MiB
llama_kv_cache_unified: CPU KV buffer size = 224.00 MiB
llama_kv_cache_unified: size = 224.00 MiB ( 4096 cells, 28 layers, 1 seqs), K (f16): 112.00 MiB, V (f16): 112.00 MiB
llama_context: CPU compute buffer size = 304.00 MiB
llama_context: graph nodes = 1098
llama_context: graph splits = 1
common_init_from_params: added <|endoftext|> logit bias = -inf
common_init_from_params: added <|im_end|> logit bias = -inf
common_init_from_params: added <|fim_pad|> logit bias = -inf
common_init_from_params: added <|repo_name|> logit bias = -inf
common_init_from_params: added <|file_sep|> logit bias = -inf
common_init_from_params: setting dry_penalty_last_n to ctx_size = 4096
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
main: llama threadpool init, n_threads = 2
system_info: n_threads = 2 (n_threads_batch = 2) / 2 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | BMI2 = 1 | LLAMAFILE = 1 | OPENMP = 1 | REPACK = 1 |
sampler seed: 484452917
sampler params:
repeat_last_n = 64, repeat_penalty = 1.000, frequency_penalty = 0.000, presence_penalty = 0.000
dry_multiplier = 0.000, dry_base = 1.750, dry_allowed_length = 2, dry_penalty_last_n = 4096
top_k = 40, top_p = 0.950, min_p = 0.050, xtc_probability = 0.000, xtc_threshold = 0.100, typical_p = 1.000, top_n_sigma = -1.000, temp = 0.800
mirostat = 0, mirostat_lr = 0.100, mirostat_ent = 5.000
sampler chain: logits -> logit-bias -> penalties -> dry -> top-n-sigma -> top-k -> typical -> top-p -> min-p -> xtc -> temp-ext -> dist
generate: n_ctx = 4096, n_batch = 2048, n_predict = -1, n_keep = 0
User: Hi
Bot:Hi
User:
Tell me the difference between thinking in humans and in LLMs.
Bot:Hi
Bot:Hi
Bot:Hi
Bot:Hi
Bot:Hi
Bot:Hi
Bot:Hi
Bot:Hi
Bot:Hi
Bot:
llama_perf_sampler_print: sampling time = 7.82 ms / 63 runs ( 0.12 ms per token, 8057.30 tokens per second)
llama_perf_context_print: load time = 38022.97 ms
llama_perf_context_print: prompt eval time = 5862.03 ms / 27 tokens ( 217.11 ms per token, 4.61 tokens per second)
llama_perf_context_print: eval time = 16124.32 ms / 35 runs ( 460.69 ms per token, 2.17 tokens per second)
llama_perf_context_print: total time = 22301.56 ms / 62 tokens
Interrupted by user
In theory it works for me, but i get endless thinking..but never ends. ( rational thinking.. but endless )
Hi, I think you're missing the chat template? That should make it better :)