git-large-r-coco-IDB2-V2-IDB2-VAtlasv2

This model is a fine-tuned version of ooliverz/git-large-r-coco-IDB2-V2 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2986

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Use adafactor and the args are: No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 150
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
5.736 5.0 5 2.0136
5.4953 10.0 10 1.9221
5.2338 15.0 15 1.7424
4.2459 20.0 20 1.4205
3.5741 25.0 25 1.2983
3.3273 30.0 30 1.2457
3.1782 35.0 35 1.0753
3.0982 40.0 40 1.0267
2.626 45.0 45 0.9531
2.4711 50.0 50 0.8802
2.4721 55.0 55 0.8395
2.2335 60.0 60 0.7950
2.1829 65.0 65 0.7458
1.976 70.0 70 0.6922
1.957 75.0 75 0.6412
1.7707 80.0 80 0.6177
1.5535 85.0 85 0.5689
1.6445 90.0 90 0.5447
1.5019 95.0 95 0.5097
1.4978 100.0 100 0.4803
1.2429 105.0 105 0.4540
1.1654 110.0 110 0.4323
1.1942 115.0 115 0.4091
1.0655 120.0 120 0.3813
0.9715 125.0 125 0.3681
0.9303 130.0 130 0.3517
0.8991 135.0 135 0.3453
0.8617 140.0 140 0.3263
0.8206 145.0 145 0.3078
0.7037 150.0 150 0.2986

Framework versions

  • Transformers 4.46.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.20.2
Downloads last month
3
Safetensors
Model size
394M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for ooliverz/git-large-r-coco-IDB2-V2-IDB2-VAtlasv2

Finetuned
(5)
this model