git-large-r-coco-IDB2-V2-IDB2-V3

This model is a fine-tuned version of ooliverz/git-large-r-coco-IDB2-V2 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5956

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 150
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
0.021 5.0 5 0.5467
0.029 10.0 10 0.5456
0.0285 15.0 15 0.5447
0.0262 20.0 20 0.5453
0.024 25.0 25 0.5478
0.0225 30.0 30 0.5512
0.0238 35.0 35 0.5544
0.0232 40.0 40 0.5563
0.0218 45.0 45 0.5566
0.0213 50.0 50 0.5565
0.0198 55.0 55 0.5571
0.0191 60.0 60 0.5592
0.0175 65.0 65 0.5620
0.0171 70.0 70 0.5629
0.0158 75.0 75 0.5648
0.0146 80.0 80 0.5667
0.0135 85.0 85 0.5683
0.0127 90.0 90 0.5711
0.012 95.0 95 0.5720
0.011 100.0 100 0.5738
0.0096 105.0 105 0.5758
0.0086 110.0 110 0.5781
0.008 115.0 115 0.5785
0.0073 120.0 120 0.5801
0.0069 125.0 125 0.5810
0.0059 130.0 130 0.5868
0.0052 135.0 135 0.5857
0.005 140.0 140 0.5875
0.0043 145.0 145 0.5960
0.0039 150.0 150 0.5956

Framework versions

  • Transformers 4.46.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.20.2
Downloads last month
5
Safetensors
Model size
394M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for ooliverz/git-large-r-coco-IDB2-V2-IDB2-V3

Finetuned
(5)
this model