Boya1_RMSProp_1-e5_20Epoch_09Momentum_Beit-base-patch16_fold1

This model is a fine-tuned version of microsoft/beit-base-patch16-224-pt22k-ft22k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 3.0645
  • Accuracy: 0.6533

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.1014 1.0 924 1.1155 0.6131
0.917 2.0 1848 1.0767 0.6242
0.7533 3.0 2772 1.0565 0.6473
0.493 4.0 3696 1.1952 0.6530
0.482 5.0 4620 1.3688 0.6473
0.1989 6.0 5544 1.6284 0.6435
0.1622 7.0 6468 2.0114 0.6373
0.0666 8.0 7392 2.2124 0.6541
0.0417 9.0 8316 2.4424 0.6389
0.0196 10.0 9240 2.5614 0.6397
0.0323 11.0 10164 2.8070 0.6443
0.0014 12.0 11088 2.8503 0.6506
0.001 13.0 12012 2.8885 0.6497
0.0706 14.0 12936 3.0224 0.6462
0.0003 15.0 13860 3.0064 0.6465
0.0013 16.0 14784 3.0115 0.6552
0.0316 17.0 15708 3.0514 0.6563
0.0002 18.0 16632 3.0348 0.6568
0.0 19.0 17556 3.0737 0.6508
0.0494 20.0 18480 3.0645 0.6533

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0
  • Datasets 2.14.6
  • Tokenizers 0.14.1
Downloads last month
16
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for onizukal/Boya1_RMSProp_1-e5_20Epoch_09Momentum_Beit-base-patch16_fold1

Finetuned
(61)
this model

Evaluation results