Edit model card

timeSformer

This model is a fine-tuned version of MCG-NJU/videomae-base-finetuned-kinetics on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 7.8889
  • Accuracy: 0.0052

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.005
  • train_batch_size: 288
  • eval_batch_size: 288
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 740

Training results

Training Loss Epoch Step Validation Loss Accuracy
3.8418 0.0135 10 5.5898 0.0122
3.1132 1.0135 20 5.8064 0.0052
3.1265 2.0135 30 5.9893 0.0087
3.1378 3.0135 40 5.8669 0.0017
3.1408 4.0135 50 6.0782 0.0
3.0995 5.0135 60 5.9832 0.0
3.0778 6.0135 70 5.6949 0.0486
3.0765 7.0135 80 5.8415 0.0017
3.0689 8.0135 90 5.9740 0.0017
3.0093 9.0135 100 5.8951 0.0052
3.021 10.0135 110 6.1976 0.0052
2.9475 11.0135 120 6.4536 0.0191
2.9468 12.0135 130 6.5053 0.0
2.9593 13.0135 140 6.1705 0.0139
2.9632 14.0135 150 6.5190 0.0017
2.9551 15.0135 160 6.6961 0.0017
3.0157 16.0135 170 6.0960 0.0208
3.0034 17.0135 180 6.5592 0.0052
2.9783 18.0135 190 6.4399 0.0365
2.9608 19.0135 200 6.4748 0.0035
2.9909 20.0135 210 6.3702 0.0035
2.9598 21.0135 220 6.5077 0.0
2.9552 22.0135 230 7.4796 0.0069
3.0327 23.0135 240 6.5649 0.0
3.0028 24.0135 250 6.6634 0.0087
2.9237 25.0135 260 6.8856 0.0
2.9411 26.0135 270 6.9620 0.0017
2.9281 27.0135 280 6.9007 0.0069
2.9255 28.0135 290 7.0261 0.0017
2.9621 29.0135 300 6.5056 0.0
2.9419 30.0135 310 6.9045 0.0035
2.978 31.0135 320 6.8059 0.0122
3.0299 32.0135 330 6.6262 0.0017
3.0313 33.0135 340 6.6773 0.0
2.995 34.0135 350 6.7126 0.0
2.9588 35.0135 360 6.4966 0.0035
2.9784 36.0135 370 6.2595 0.0
3.0047 37.0135 380 6.5504 0.0
2.98 38.0135 390 6.3898 0.0017
2.9568 39.0135 400 6.8740 0.0017
2.9418 40.0135 410 6.5854 0.0
2.955 41.0135 420 6.5085 0.0052
2.9689 42.0135 430 6.4343 0.0
2.9494 43.0135 440 6.5746 0.0
2.9363 44.0135 450 6.7996 0.0035
2.9002 45.0135 460 7.1057 0.0035
2.8776 46.0135 470 7.4000 0.0035
2.8853 47.0135 480 6.9539 0.0017
2.8618 48.0135 490 7.0917 0.0035
2.8728 49.0135 500 7.4421 0.0017
2.8888 50.0135 510 7.1914 0.0052
2.8824 51.0135 520 7.3226 0.0069
2.8932 52.0135 530 7.3581 0.0
2.8562 53.0135 540 7.3102 0.0017
2.8651 54.0135 550 7.2675 0.0035
2.8898 55.0135 560 7.5446 0.0017
2.8931 56.0135 570 7.2915 0.0
2.8864 57.0135 580 7.2397 0.0017
2.8683 58.0135 590 6.9988 0.0017
2.8213 59.0135 600 7.4490 0.0052
2.8319 60.0135 610 7.5569 0.0017
2.8237 61.0135 620 7.5322 0.0017
2.8057 62.0135 630 7.6815 0.0122
2.8047 63.0135 640 7.3165 0.0
2.8277 64.0135 650 7.4256 0.0069
2.8202 65.0135 660 7.6688 0.0035
2.772 66.0135 670 7.5628 0.0052
2.7749 67.0135 680 7.7103 0.0052
2.7442 68.0135 690 7.8151 0.0052
2.7715 69.0135 700 7.8429 0.0052
2.7593 70.0135 710 7.8079 0.0052
2.7334 71.0135 720 7.8237 0.0052
2.7392 72.0135 730 7.9085 0.0052
2.753 73.0135 740 7.8889 0.0052

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
4
Safetensors
Model size
86.3M params
Tensor type
F32
·
Inference API
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for okiane/timeSformer

Finetuned
(71)
this model