metadata
library_name: transformers
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
- generated_from_trainer
datasets:
- common_voice_17_0
metrics:
- wer
model-index:
- name: wav2vec2-large-mms-1b-amharic-colab
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_17_0
type: common_voice_17_0
config: am
split: test
args: am
metrics:
- name: Wer
type: wer
value: 0.504746835443038
wav2vec2-large-mms-1b-amharic-colab
This model is a fine-tuned version of facebook/mms-1b-all on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.6247
- Wer: 0.5047
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 4
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
15.6099 | 1.1364 | 50 | 3.3812 | 0.9995 |
1.174 | 2.2727 | 100 | 0.6846 | 0.5174 |
0.6566 | 3.4091 | 150 | 0.6247 | 0.5047 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.5.1+cu124
- Datasets 3.5.0
- Tokenizers 0.21.0