synthetic-speaker-all2
This model is a fine-tuned version of pyannote/segmentation-3.0 on the objects76/synthetic-all2 dataset. It achieves the following results on the evaluation set:
- Loss: 0.4266
- Der: 0.1475
- False Alarm: 0.0400
- Missed Detection: 0.0642
- Confusion: 0.0433
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 2048
- eval_batch_size: 2048
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 80
Training results
Training Loss | Epoch | Step | Validation Loss | Der | False Alarm | Missed Detection | Confusion |
---|---|---|---|---|---|---|---|
No log | 1.0 | 4 | 1.2677 | 0.3767 | 0.0840 | 0.1112 | 0.1814 |
No log | 2.0 | 8 | 1.1144 | 0.3767 | 0.0840 | 0.1112 | 0.1814 |
No log | 3.0 | 12 | 1.0708 | 0.3767 | 0.0840 | 0.1112 | 0.1814 |
No log | 4.0 | 16 | 1.0541 | 0.3767 | 0.0840 | 0.1112 | 0.1814 |
No log | 5.0 | 20 | 1.0195 | 0.3767 | 0.0840 | 0.1112 | 0.1814 |
No log | 6.0 | 24 | 0.9842 | 0.3767 | 0.0840 | 0.1112 | 0.1814 |
1.1207 | 7.0 | 28 | 0.9609 | 0.3385 | 0.0392 | 0.1215 | 0.1778 |
1.1207 | 8.0 | 32 | 0.9318 | 0.3373 | 0.0169 | 0.1557 | 0.1647 |
1.1207 | 9.0 | 36 | 0.8868 | 0.3277 | 0.0104 | 0.1518 | 0.1655 |
1.1207 | 10.0 | 40 | 0.8940 | 0.3260 | 0.0074 | 0.1523 | 0.1663 |
1.1207 | 11.0 | 44 | 0.8631 | 0.3231 | 0.0070 | 0.1486 | 0.1675 |
1.1207 | 12.0 | 48 | 0.8561 | 0.3268 | 0.0060 | 0.1559 | 0.1649 |
0.9018 | 13.0 | 52 | 0.8517 | 0.3298 | 0.0050 | 0.1618 | 0.1631 |
0.9018 | 14.0 | 56 | 0.8261 | 0.3204 | 0.0096 | 0.1416 | 0.1692 |
0.9018 | 15.0 | 60 | 0.8320 | 0.3166 | 0.0147 | 0.1345 | 0.1674 |
0.9018 | 16.0 | 64 | 0.8043 | 0.3049 | 0.0073 | 0.1456 | 0.1520 |
0.9018 | 17.0 | 68 | 0.7775 | 0.3031 | 0.0046 | 0.1555 | 0.1429 |
0.9018 | 18.0 | 72 | 0.7423 | 0.2865 | 0.0122 | 0.1371 | 0.1372 |
0.79 | 19.0 | 76 | 0.7498 | 0.2938 | 0.0071 | 0.1470 | 0.1397 |
0.79 | 20.0 | 80 | 0.7526 | 0.2795 | 0.0083 | 0.1427 | 0.1284 |
0.79 | 21.0 | 84 | 0.7275 | 0.2706 | 0.0075 | 0.1434 | 0.1197 |
0.79 | 22.0 | 88 | 0.7311 | 0.2673 | 0.0051 | 0.1511 | 0.1111 |
0.79 | 23.0 | 92 | 0.7051 | 0.2492 | 0.0080 | 0.1442 | 0.0970 |
0.79 | 24.0 | 96 | 0.7256 | 0.2582 | 0.0042 | 0.1571 | 0.0969 |
0.7096 | 25.0 | 100 | 0.7401 | 0.2700 | 0.0092 | 0.1403 | 0.1206 |
0.7096 | 26.0 | 104 | 0.6983 | 0.2612 | 0.0094 | 0.1387 | 0.1130 |
0.7096 | 27.0 | 108 | 0.6808 | 0.2476 | 0.0173 | 0.1294 | 0.1008 |
0.7096 | 28.0 | 112 | 0.6524 | 0.2390 | 0.0141 | 0.1319 | 0.0930 |
0.7096 | 29.0 | 116 | 0.6656 | 0.2489 | 0.0093 | 0.1391 | 0.1004 |
0.7096 | 30.0 | 120 | 0.6416 | 0.2370 | 0.0188 | 0.1279 | 0.0903 |
0.7096 | 31.0 | 124 | 0.6209 | 0.2324 | 0.0171 | 0.1294 | 0.0859 |
0.6372 | 32.0 | 128 | 0.5997 | 0.2279 | 0.0093 | 0.1365 | 0.0821 |
0.6372 | 33.0 | 132 | 0.5951 | 0.2217 | 0.0201 | 0.1202 | 0.0814 |
0.6372 | 34.0 | 136 | 0.5830 | 0.2156 | 0.0293 | 0.1134 | 0.0729 |
0.6372 | 35.0 | 140 | 0.5635 | 0.2025 | 0.0172 | 0.1177 | 0.0675 |
0.6372 | 36.0 | 144 | 0.5500 | 0.2041 | 0.0402 | 0.0901 | 0.0739 |
0.6372 | 37.0 | 148 | 0.5361 | 0.1938 | 0.0308 | 0.0987 | 0.0642 |
0.5249 | 38.0 | 152 | 0.5577 | 0.2000 | 0.0172 | 0.1114 | 0.0714 |
0.5249 | 39.0 | 156 | 0.5340 | 0.1940 | 0.0502 | 0.0777 | 0.0661 |
0.5249 | 40.0 | 160 | 0.5264 | 0.1908 | 0.0529 | 0.0735 | 0.0644 |
0.5249 | 41.0 | 164 | 0.5225 | 0.1871 | 0.0259 | 0.0974 | 0.0638 |
0.5249 | 42.0 | 168 | 0.5010 | 0.1789 | 0.0270 | 0.0924 | 0.0595 |
0.5249 | 43.0 | 172 | 0.5001 | 0.1764 | 0.0340 | 0.0854 | 0.0571 |
0.4598 | 44.0 | 176 | 0.5402 | 0.1868 | 0.0465 | 0.0750 | 0.0653 |
0.4598 | 45.0 | 180 | 0.5087 | 0.1753 | 0.0255 | 0.0948 | 0.0550 |
0.4598 | 46.0 | 184 | 0.5051 | 0.1816 | 0.0708 | 0.0581 | 0.0526 |
0.4598 | 47.0 | 188 | 0.4836 | 0.1722 | 0.0600 | 0.0641 | 0.0482 |
0.4598 | 48.0 | 192 | 0.5098 | 0.1847 | 0.0714 | 0.0600 | 0.0534 |
0.4598 | 49.0 | 196 | 0.4915 | 0.1752 | 0.0293 | 0.0854 | 0.0605 |
0.4239 | 50.0 | 200 | 0.4727 | 0.1685 | 0.0368 | 0.0818 | 0.0499 |
0.4239 | 51.0 | 204 | 0.4709 | 0.1655 | 0.0638 | 0.0565 | 0.0452 |
0.4239 | 52.0 | 208 | 0.4611 | 0.1641 | 0.0538 | 0.0623 | 0.0481 |
0.4239 | 53.0 | 212 | 0.4597 | 0.1626 | 0.0335 | 0.0768 | 0.0523 |
0.4239 | 54.0 | 216 | 0.4669 | 0.1622 | 0.0379 | 0.0728 | 0.0515 |
0.4239 | 55.0 | 220 | 0.4536 | 0.1612 | 0.0466 | 0.0628 | 0.0517 |
0.4239 | 56.0 | 224 | 0.4576 | 0.1640 | 0.0487 | 0.0663 | 0.0490 |
0.3873 | 57.0 | 228 | 0.4575 | 0.1598 | 0.0424 | 0.0669 | 0.0504 |
0.3873 | 58.0 | 232 | 0.4396 | 0.1531 | 0.0428 | 0.0650 | 0.0454 |
0.3873 | 59.0 | 236 | 0.4496 | 0.1589 | 0.0524 | 0.0595 | 0.0470 |
0.3873 | 60.0 | 240 | 0.4441 | 0.1559 | 0.0314 | 0.0790 | 0.0455 |
0.3873 | 61.0 | 244 | 0.4526 | 0.1604 | 0.0726 | 0.0487 | 0.0390 |
0.3873 | 62.0 | 248 | 0.4389 | 0.1542 | 0.0299 | 0.0786 | 0.0458 |
0.3667 | 63.0 | 252 | 0.4377 | 0.1539 | 0.0543 | 0.0560 | 0.0436 |
0.3667 | 64.0 | 256 | 0.4343 | 0.1504 | 0.0374 | 0.0693 | 0.0437 |
0.3667 | 65.0 | 260 | 0.4317 | 0.1527 | 0.0550 | 0.0557 | 0.0420 |
0.3667 | 66.0 | 264 | 0.4279 | 0.1484 | 0.0342 | 0.0703 | 0.0439 |
0.3667 | 67.0 | 268 | 0.4303 | 0.1496 | 0.0438 | 0.0635 | 0.0423 |
0.3667 | 68.0 | 272 | 0.4270 | 0.1480 | 0.0407 | 0.0629 | 0.0445 |
0.3426 | 69.0 | 276 | 0.4220 | 0.1466 | 0.0374 | 0.0657 | 0.0434 |
0.3426 | 70.0 | 280 | 0.4284 | 0.1492 | 0.0429 | 0.0633 | 0.0431 |
0.3426 | 71.0 | 284 | 0.4313 | 0.1486 | 0.0369 | 0.0676 | 0.0441 |
0.3426 | 72.0 | 288 | 0.4284 | 0.1481 | 0.0416 | 0.0633 | 0.0431 |
0.3426 | 73.0 | 292 | 0.4275 | 0.1474 | 0.0415 | 0.0627 | 0.0432 |
0.3426 | 74.0 | 296 | 0.4246 | 0.1471 | 0.0410 | 0.0631 | 0.0430 |
0.3326 | 75.0 | 300 | 0.4259 | 0.1473 | 0.0410 | 0.0634 | 0.0429 |
0.3326 | 76.0 | 304 | 0.4262 | 0.1477 | 0.0402 | 0.0641 | 0.0434 |
0.3326 | 77.0 | 308 | 0.4271 | 0.1476 | 0.0395 | 0.0644 | 0.0437 |
0.3326 | 78.0 | 312 | 0.4264 | 0.1475 | 0.0399 | 0.0643 | 0.0433 |
0.3326 | 79.0 | 316 | 0.4267 | 0.1475 | 0.0400 | 0.0642 | 0.0433 |
0.3326 | 80.0 | 320 | 0.4266 | 0.1475 | 0.0400 | 0.0642 | 0.0433 |
Framework versions
- Transformers 4.51.0
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
HF Inference deployability: The model has no pipeline_tag.
Model tree for objects76/synthetic-all-2.25sec-250417_1010
Base model
pyannote/segmentation-3.0