full-eval-ja-522-pivot

This model is a fine-tuned version of pyannote/segmentation-3.0 on the objects76/rsup-eval-ja-522-250513 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7260
  • Der: 0.2451
  • False Alarm: 0.0501
  • Missed Detection: 0.1370
  • Confusion: 0.0579

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 2048
  • eval_batch_size: 2048
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • num_epochs: 200

Training results

Training Loss Epoch Step Validation Loss Der False Alarm Missed Detection Confusion
No log 1.0 1 1.3787 0.4863 0.0407 0.2177 0.2279
No log 2.0 2 1.3678 0.4526 0.0501 0.1370 0.2655
No log 3.0 3 1.3538 0.4526 0.0501 0.1370 0.2655
No log 4.0 4 1.3302 0.4526 0.0501 0.1370 0.2655
No log 5.0 5 1.2866 0.4526 0.0501 0.1370 0.2655
No log 6.0 6 1.2250 0.4526 0.0501 0.1370 0.2655
No log 7.0 7 1.1777 0.4526 0.0501 0.1370 0.2655
No log 8.0 8 1.1856 0.4526 0.0501 0.1370 0.2655
No log 9.0 9 1.2031 0.4526 0.0501 0.1370 0.2655
No log 10.0 10 1.1904 0.4526 0.0501 0.1370 0.2655
No log 11.0 11 1.1680 0.4526 0.0501 0.1370 0.2655
No log 12.0 12 1.1535 0.4526 0.0501 0.1370 0.2655
No log 13.0 13 1.1492 0.4526 0.0501 0.1370 0.2655
No log 14.0 14 1.1495 0.4526 0.0501 0.1370 0.2655
No log 15.0 15 1.1498 0.4526 0.0501 0.1370 0.2655
No log 16.0 16 1.1489 0.4526 0.0501 0.1370 0.2655
No log 17.0 17 1.1472 0.4526 0.0501 0.1370 0.2655
No log 18.0 18 1.1465 0.4526 0.0501 0.1370 0.2655
No log 19.0 19 1.1478 0.4526 0.0501 0.1370 0.2655
No log 20.0 20 1.1504 0.4526 0.0501 0.1370 0.2655
No log 21.0 21 1.1519 0.4526 0.0501 0.1370 0.2655
No log 22.0 22 1.1523 0.4526 0.0501 0.1370 0.2655
No log 23.0 23 1.1512 0.4526 0.0501 0.1370 0.2655
No log 24.0 24 1.1492 0.4526 0.0501 0.1370 0.2655
1.1857 25.0 25 1.1470 0.4526 0.0501 0.1370 0.2655
1.1857 26.0 26 1.1445 0.4526 0.0501 0.1370 0.2655
1.1857 27.0 27 1.1416 0.4526 0.0501 0.1370 0.2655
1.1857 28.0 28 1.1394 0.4526 0.0501 0.1370 0.2655
1.1857 29.0 29 1.1369 0.4526 0.0501 0.1370 0.2655
1.1857 30.0 30 1.1354 0.4526 0.0501 0.1370 0.2655
1.1857 31.0 31 1.1340 0.4526 0.0501 0.1370 0.2655
1.1857 32.0 32 1.1328 0.4503 0.0501 0.1370 0.2631
1.1857 33.0 33 1.0884 0.4307 0.0501 0.1370 0.2435
1.1857 34.0 34 1.0495 0.3814 0.0501 0.1370 0.1942
1.1857 35.0 35 1.0340 0.2475 0.0501 0.1370 0.0603
1.1857 36.0 36 1.0111 0.3258 0.0501 0.1370 0.1386
1.1857 37.0 37 0.9765 0.2803 0.0501 0.1370 0.0932
1.1857 38.0 38 0.9547 0.2443 0.0501 0.1370 0.0572
1.1857 39.0 39 0.9093 0.2428 0.0501 0.1370 0.0556
1.1857 40.0 40 0.8913 0.2475 0.0501 0.1370 0.0603
1.1857 41.0 41 0.8402 0.2412 0.0501 0.1370 0.0540
1.1857 42.0 42 0.8096 0.2373 0.0501 0.1370 0.0501
1.1857 43.0 43 0.7950 0.2404 0.0501 0.1370 0.0532
1.1857 44.0 44 0.7625 0.2428 0.0501 0.1370 0.0556
1.1857 45.0 45 0.7550 0.2420 0.0501 0.1370 0.0548
1.1857 46.0 46 0.7273 0.2381 0.0501 0.1370 0.0509
1.1857 47.0 47 0.7126 0.2396 0.0501 0.1370 0.0525
1.1857 48.0 48 0.7289 0.2459 0.0501 0.1370 0.0587
1.1857 49.0 49 0.6965 0.2381 0.0501 0.1370 0.0509
0.9285 50.0 50 0.6970 0.2420 0.0619 0.1323 0.0478
0.9285 51.0 51 0.7081 0.2388 0.0603 0.1308 0.0478
0.9285 52.0 52 0.6896 0.2373 0.0720 0.1261 0.0392
0.9285 53.0 53 0.6952 0.2412 0.0752 0.1261 0.0399
0.9285 54.0 54 0.7025 0.2365 0.0642 0.1284 0.0439
0.9285 55.0 55 0.6864 0.2341 0.0713 0.1253 0.0376
0.9285 56.0 56 0.6920 0.2357 0.0713 0.1261 0.0384
0.9285 57.0 57 0.7058 0.2396 0.0658 0.1284 0.0454
0.9285 58.0 58 0.6878 0.2334 0.0681 0.1284 0.0368
0.9285 59.0 59 0.7039 0.2388 0.0634 0.1308 0.0446
0.9285 60.0 60 0.7155 0.2365 0.0532 0.1339 0.0493
0.9285 61.0 61 0.7017 0.2373 0.0540 0.1355 0.0478
0.9285 62.0 62 0.7291 0.2475 0.0501 0.1370 0.0603
0.9285 63.0 63 0.7072 0.2381 0.0501 0.1370 0.0509
0.9285 64.0 64 0.7189 0.2357 0.0501 0.1370 0.0486
0.9285 65.0 65 0.7260 0.2451 0.0501 0.1370 0.0579

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
3
Safetensors
Model size
1.47M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for objects76/full-rsup_eval-2.25sec-250513_1109

Finetuned
(69)
this model

Dataset used to train objects76/full-rsup_eval-2.25sec-250513_1109