full-eval-ja-522-pivot
This model is a fine-tuned version of pyannote/segmentation-3.0 on the objects76/rsup-eval-ja-522-250513 dataset. It achieves the following results on the evaluation set:
- Loss: 0.7260
- Der: 0.2451
- False Alarm: 0.0501
- Missed Detection: 0.1370
- Confusion: 0.0579
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 2048
- eval_batch_size: 2048
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 200
Training results
Training Loss | Epoch | Step | Validation Loss | Der | False Alarm | Missed Detection | Confusion |
---|---|---|---|---|---|---|---|
No log | 1.0 | 1 | 1.3787 | 0.4863 | 0.0407 | 0.2177 | 0.2279 |
No log | 2.0 | 2 | 1.3678 | 0.4526 | 0.0501 | 0.1370 | 0.2655 |
No log | 3.0 | 3 | 1.3538 | 0.4526 | 0.0501 | 0.1370 | 0.2655 |
No log | 4.0 | 4 | 1.3302 | 0.4526 | 0.0501 | 0.1370 | 0.2655 |
No log | 5.0 | 5 | 1.2866 | 0.4526 | 0.0501 | 0.1370 | 0.2655 |
No log | 6.0 | 6 | 1.2250 | 0.4526 | 0.0501 | 0.1370 | 0.2655 |
No log | 7.0 | 7 | 1.1777 | 0.4526 | 0.0501 | 0.1370 | 0.2655 |
No log | 8.0 | 8 | 1.1856 | 0.4526 | 0.0501 | 0.1370 | 0.2655 |
No log | 9.0 | 9 | 1.2031 | 0.4526 | 0.0501 | 0.1370 | 0.2655 |
No log | 10.0 | 10 | 1.1904 | 0.4526 | 0.0501 | 0.1370 | 0.2655 |
No log | 11.0 | 11 | 1.1680 | 0.4526 | 0.0501 | 0.1370 | 0.2655 |
No log | 12.0 | 12 | 1.1535 | 0.4526 | 0.0501 | 0.1370 | 0.2655 |
No log | 13.0 | 13 | 1.1492 | 0.4526 | 0.0501 | 0.1370 | 0.2655 |
No log | 14.0 | 14 | 1.1495 | 0.4526 | 0.0501 | 0.1370 | 0.2655 |
No log | 15.0 | 15 | 1.1498 | 0.4526 | 0.0501 | 0.1370 | 0.2655 |
No log | 16.0 | 16 | 1.1489 | 0.4526 | 0.0501 | 0.1370 | 0.2655 |
No log | 17.0 | 17 | 1.1472 | 0.4526 | 0.0501 | 0.1370 | 0.2655 |
No log | 18.0 | 18 | 1.1465 | 0.4526 | 0.0501 | 0.1370 | 0.2655 |
No log | 19.0 | 19 | 1.1478 | 0.4526 | 0.0501 | 0.1370 | 0.2655 |
No log | 20.0 | 20 | 1.1504 | 0.4526 | 0.0501 | 0.1370 | 0.2655 |
No log | 21.0 | 21 | 1.1519 | 0.4526 | 0.0501 | 0.1370 | 0.2655 |
No log | 22.0 | 22 | 1.1523 | 0.4526 | 0.0501 | 0.1370 | 0.2655 |
No log | 23.0 | 23 | 1.1512 | 0.4526 | 0.0501 | 0.1370 | 0.2655 |
No log | 24.0 | 24 | 1.1492 | 0.4526 | 0.0501 | 0.1370 | 0.2655 |
1.1857 | 25.0 | 25 | 1.1470 | 0.4526 | 0.0501 | 0.1370 | 0.2655 |
1.1857 | 26.0 | 26 | 1.1445 | 0.4526 | 0.0501 | 0.1370 | 0.2655 |
1.1857 | 27.0 | 27 | 1.1416 | 0.4526 | 0.0501 | 0.1370 | 0.2655 |
1.1857 | 28.0 | 28 | 1.1394 | 0.4526 | 0.0501 | 0.1370 | 0.2655 |
1.1857 | 29.0 | 29 | 1.1369 | 0.4526 | 0.0501 | 0.1370 | 0.2655 |
1.1857 | 30.0 | 30 | 1.1354 | 0.4526 | 0.0501 | 0.1370 | 0.2655 |
1.1857 | 31.0 | 31 | 1.1340 | 0.4526 | 0.0501 | 0.1370 | 0.2655 |
1.1857 | 32.0 | 32 | 1.1328 | 0.4503 | 0.0501 | 0.1370 | 0.2631 |
1.1857 | 33.0 | 33 | 1.0884 | 0.4307 | 0.0501 | 0.1370 | 0.2435 |
1.1857 | 34.0 | 34 | 1.0495 | 0.3814 | 0.0501 | 0.1370 | 0.1942 |
1.1857 | 35.0 | 35 | 1.0340 | 0.2475 | 0.0501 | 0.1370 | 0.0603 |
1.1857 | 36.0 | 36 | 1.0111 | 0.3258 | 0.0501 | 0.1370 | 0.1386 |
1.1857 | 37.0 | 37 | 0.9765 | 0.2803 | 0.0501 | 0.1370 | 0.0932 |
1.1857 | 38.0 | 38 | 0.9547 | 0.2443 | 0.0501 | 0.1370 | 0.0572 |
1.1857 | 39.0 | 39 | 0.9093 | 0.2428 | 0.0501 | 0.1370 | 0.0556 |
1.1857 | 40.0 | 40 | 0.8913 | 0.2475 | 0.0501 | 0.1370 | 0.0603 |
1.1857 | 41.0 | 41 | 0.8402 | 0.2412 | 0.0501 | 0.1370 | 0.0540 |
1.1857 | 42.0 | 42 | 0.8096 | 0.2373 | 0.0501 | 0.1370 | 0.0501 |
1.1857 | 43.0 | 43 | 0.7950 | 0.2404 | 0.0501 | 0.1370 | 0.0532 |
1.1857 | 44.0 | 44 | 0.7625 | 0.2428 | 0.0501 | 0.1370 | 0.0556 |
1.1857 | 45.0 | 45 | 0.7550 | 0.2420 | 0.0501 | 0.1370 | 0.0548 |
1.1857 | 46.0 | 46 | 0.7273 | 0.2381 | 0.0501 | 0.1370 | 0.0509 |
1.1857 | 47.0 | 47 | 0.7126 | 0.2396 | 0.0501 | 0.1370 | 0.0525 |
1.1857 | 48.0 | 48 | 0.7289 | 0.2459 | 0.0501 | 0.1370 | 0.0587 |
1.1857 | 49.0 | 49 | 0.6965 | 0.2381 | 0.0501 | 0.1370 | 0.0509 |
0.9285 | 50.0 | 50 | 0.6970 | 0.2420 | 0.0619 | 0.1323 | 0.0478 |
0.9285 | 51.0 | 51 | 0.7081 | 0.2388 | 0.0603 | 0.1308 | 0.0478 |
0.9285 | 52.0 | 52 | 0.6896 | 0.2373 | 0.0720 | 0.1261 | 0.0392 |
0.9285 | 53.0 | 53 | 0.6952 | 0.2412 | 0.0752 | 0.1261 | 0.0399 |
0.9285 | 54.0 | 54 | 0.7025 | 0.2365 | 0.0642 | 0.1284 | 0.0439 |
0.9285 | 55.0 | 55 | 0.6864 | 0.2341 | 0.0713 | 0.1253 | 0.0376 |
0.9285 | 56.0 | 56 | 0.6920 | 0.2357 | 0.0713 | 0.1261 | 0.0384 |
0.9285 | 57.0 | 57 | 0.7058 | 0.2396 | 0.0658 | 0.1284 | 0.0454 |
0.9285 | 58.0 | 58 | 0.6878 | 0.2334 | 0.0681 | 0.1284 | 0.0368 |
0.9285 | 59.0 | 59 | 0.7039 | 0.2388 | 0.0634 | 0.1308 | 0.0446 |
0.9285 | 60.0 | 60 | 0.7155 | 0.2365 | 0.0532 | 0.1339 | 0.0493 |
0.9285 | 61.0 | 61 | 0.7017 | 0.2373 | 0.0540 | 0.1355 | 0.0478 |
0.9285 | 62.0 | 62 | 0.7291 | 0.2475 | 0.0501 | 0.1370 | 0.0603 |
0.9285 | 63.0 | 63 | 0.7072 | 0.2381 | 0.0501 | 0.1370 | 0.0509 |
0.9285 | 64.0 | 64 | 0.7189 | 0.2357 | 0.0501 | 0.1370 | 0.0486 |
0.9285 | 65.0 | 65 | 0.7260 | 0.2451 | 0.0501 | 0.1370 | 0.0579 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for objects76/full-rsup_eval-2.25sec-250513_1109
Base model
pyannote/segmentation-3.0