ft-eval-ja-522-pivot
This model is a fine-tuned version of pyannote/segmentation-3.0 on the objects76/rsup-eval-ja-522-250513 dataset. It achieves the following results on the evaluation set:
- Loss: 0.6497
- Der: 0.2083
- False Alarm: 0.0697
- Missed Detection: 0.1057
- Confusion: 0.0329
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 2048
- eval_batch_size: 2048
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 200
Training results
Training Loss | Epoch | Step | Confusion | Der | False Alarm | Validation Loss | Missed Detection |
---|---|---|---|---|---|---|---|
No log | 1.0 | 1 | 0.2639 | 0.4565 | 0.0501 | 1.3898 | 0.1425 |
No log | 2.0 | 2 | 0.2639 | 0.4565 | 0.0501 | 1.3328 | 0.1425 |
No log | 3.0 | 3 | 0.2631 | 0.4558 | 0.0501 | 1.2855 | 0.1425 |
No log | 4.0 | 4 | 0.2623 | 0.4542 | 0.0501 | 1.2522 | 0.1417 |
No log | 5.0 | 5 | 0.2545 | 0.4503 | 0.0611 | 1.2408 | 0.1347 |
No log | 6.0 | 6 | 0.2381 | 0.4659 | 0.0979 | 1.2338 | 0.1300 |
No log | 7.0 | 7 | 0.2349 | 0.4683 | 0.1104 | 1.2109 | 0.1229 |
No log | 8.0 | 8 | 0.2302 | 0.4730 | 0.1237 | 1.1966 | 0.1190 |
No log | 9.0 | 9 | 0.2271 | 0.4730 | 0.1276 | 1.1781 | 0.1182 |
No log | 10.0 | 10 | 0.2263 | 0.4667 | 0.1222 | 1.1680 | 0.1182 |
No log | 11.0 | 11 | 0.2232 | 0.4565 | 0.1128 | 1.1531 | 0.1206 |
No log | 12.0 | 12 | 0.2302 | 0.4558 | 0.1018 | 1.1398 | 0.1237 |
No log | 13.0 | 13 | 0.2310 | 0.4471 | 0.0861 | 1.1217 | 0.1300 |
No log | 14.0 | 14 | 0.2271 | 0.4346 | 0.0760 | 1.1089 | 0.1316 |
No log | 15.0 | 15 | 0.2216 | 0.4221 | 0.0673 | 1.0974 | 0.1331 |
No log | 16.0 | 16 | 0.2130 | 0.4056 | 0.0587 | 1.0849 | 0.1339 |
No log | 17.0 | 17 | 0.2013 | 0.3923 | 0.0556 | 1.0773 | 0.1355 |
No log | 18.0 | 18 | 0.1950 | 0.3861 | 0.0540 | 1.0707 | 0.1370 |
No log | 19.0 | 19 | 0.1848 | 0.3759 | 0.0540 | 1.0606 | 0.1370 |
No log | 20.0 | 20 | 0.1723 | 0.3618 | 0.0525 | 1.0530 | 0.1370 |
No log | 21.0 | 21 | 0.1652 | 0.3547 | 0.0525 | 1.0447 | 0.1370 |
No log | 22.0 | 22 | 0.1519 | 0.3414 | 0.0525 | 1.0299 | 0.1370 |
No log | 23.0 | 23 | 0.1331 | 0.3211 | 0.0509 | 1.0169 | 0.1370 |
No log | 24.0 | 24 | 0.1206 | 0.3085 | 0.0509 | 1.0047 | 0.1370 |
1.1234 | 25.0 | 25 | 0.1104 | 0.2984 | 0.0509 | 0.9888 | 0.1370 |
1.1234 | 26.0 | 26 | 0.1042 | 0.2921 | 0.0509 | 0.9766 | 0.1370 |
1.1234 | 27.0 | 27 | 0.1002 | 0.2897 | 0.0525 | 0.9609 | 0.1370 |
1.1234 | 28.0 | 28 | 0.0948 | 0.2827 | 0.0532 | 0.9471 | 0.1347 |
1.1234 | 29.0 | 29 | 0.0893 | 0.2772 | 0.0540 | 0.9354 | 0.1339 |
1.1234 | 30.0 | 30 | 0.0869 | 0.2756 | 0.0548 | 0.9221 | 0.1339 |
1.1234 | 31.0 | 31 | 0.0830 | 0.2694 | 0.0532 | 0.9054 | 0.1331 |
1.1234 | 32.0 | 32 | 0.0807 | 0.2655 | 0.0509 | 0.8924 | 0.1339 |
1.1234 | 33.0 | 33 | 0.0760 | 0.2600 | 0.0509 | 0.8797 | 0.1331 |
1.1234 | 34.0 | 34 | 0.0728 | 0.2553 | 0.0493 | 0.8676 | 0.1331 |
1.1234 | 35.0 | 35 | 0.0705 | 0.2506 | 0.0478 | 0.8559 | 0.1323 |
1.1234 | 36.0 | 36 | 0.0689 | 0.2475 | 0.0462 | 0.8389 | 0.1323 |
1.1234 | 37.0 | 37 | 0.0697 | 0.2467 | 0.0454 | 0.8266 | 0.1316 |
1.1234 | 38.0 | 38 | 0.0673 | 0.2435 | 0.0446 | 0.8095 | 0.1316 |
1.1234 | 39.0 | 39 | 0.0619 | 0.2373 | 0.0446 | 0.7967 | 0.1308 |
1.1234 | 40.0 | 40 | 0.0595 | 0.2334 | 0.0439 | 0.7836 | 0.1300 |
1.1234 | 41.0 | 41 | 0.0564 | 0.2302 | 0.0454 | 0.7704 | 0.1284 |
1.1234 | 42.0 | 42 | 0.0525 | 0.2287 | 0.0478 | 0.7571 | 0.1284 |
1.1234 | 43.0 | 43 | 0.0532 | 0.2279 | 0.0486 | 0.7444 | 0.1261 |
1.1234 | 44.0 | 44 | 0.0493 | 0.2224 | 0.0509 | 0.7324 | 0.1222 |
1.1234 | 45.0 | 45 | 0.0493 | 0.2224 | 0.0517 | 0.7211 | 0.1214 |
1.1234 | 46.0 | 46 | 0.0486 | 0.2208 | 0.0517 | 0.7109 | 0.1206 |
1.1234 | 47.0 | 47 | 0.0462 | 0.2169 | 0.0509 | 0.7017 | 0.1198 |
1.1234 | 48.0 | 48 | 0.0454 | 0.2161 | 0.0509 | 0.6934 | 0.1198 |
1.1234 | 49.0 | 49 | 0.0423 | 0.2130 | 0.0509 | 0.6863 | 0.1198 |
0.785 | 50.0 | 50 | 0.0415 | 0.2130 | 0.0525 | 0.6800 | 0.1190 |
0.785 | 51.0 | 51 | 0.0423 | 0.2114 | 0.0501 | 0.6746 | 0.1190 |
0.785 | 52.0 | 52 | 0.0415 | 0.2114 | 0.0525 | 0.6701 | 0.1175 |
0.785 | 53.0 | 53 | 0.0423 | 0.2122 | 0.0517 | 0.6657 | 0.1182 |
0.785 | 54.0 | 54 | 0.0431 | 0.2122 | 0.0532 | 0.6610 | 0.1159 |
0.785 | 55.0 | 55 | 0.0423 | 0.2130 | 0.0540 | 0.6569 | 0.1167 |
0.785 | 56.0 | 56 | 0.0423 | 0.2122 | 0.0564 | 0.6523 | 0.1135 |
0.785 | 57.0 | 57 | 0.0407 | 0.2122 | 0.0587 | 0.6483 | 0.1128 |
0.785 | 58.0 | 58 | 0.0399 | 0.2122 | 0.0619 | 0.6454 | 0.1104 |
0.785 | 59.0 | 59 | 0.0415 | 0.2153 | 0.0634 | 0.6433 | 0.1104 |
0.785 | 60.0 | 60 | 0.0399 | 0.2161 | 0.0666 | 0.6413 | 0.1096 |
0.785 | 61.0 | 61 | 0.0399 | 0.2153 | 0.0666 | 0.6402 | 0.1088 |
0.785 | 62.0 | 62 | 0.0376 | 0.2161 | 0.0673 | 0.6387 | 0.1112 |
0.785 | 63.0 | 63 | 0.0368 | 0.2130 | 0.0689 | 0.6365 | 0.1073 |
0.785 | 64.0 | 64 | 0.0376 | 0.2138 | 0.0705 | 0.6341 | 0.1057 |
0.785 | 65.0 | 65 | 0.0352 | 0.2091 | 0.0681 | 0.6336 | 0.1057 |
0.785 | 66.0 | 66 | 0.6349 | 0.2099 | 0.0689 | 0.1073 | 0.0337 |
0.785 | 67.0 | 67 | 0.6376 | 0.2075 | 0.0658 | 0.1096 | 0.0321 |
0.785 | 68.0 | 68 | 0.6409 | 0.2060 | 0.0650 | 0.1088 | 0.0321 |
0.785 | 69.0 | 69 | 0.6450 | 0.2067 | 0.0650 | 0.1088 | 0.0329 |
0.785 | 70.0 | 70 | 0.6466 | 0.2067 | 0.0673 | 0.1073 | 0.0321 |
0.785 | 71.0 | 71 | 0.6463 | 0.2052 | 0.0673 | 0.1057 | 0.0321 |
0.785 | 72.0 | 72 | 0.6449 | 0.2052 | 0.0673 | 0.1049 | 0.0329 |
0.785 | 73.0 | 73 | 0.6453 | 0.2067 | 0.0697 | 0.1042 | 0.0329 |
0.785 | 74.0 | 74 | 0.6465 | 0.2075 | 0.0705 | 0.1042 | 0.0329 |
0.471 | 75.0 | 75 | 0.6497 | 0.2083 | 0.0697 | 0.1057 | 0.0329 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for objects76/ft-rsup_eval-2.25sec-250513_1059
Base model
pyannote/segmentation-3.0