ft-ja4-2.25sec

This model is a fine-tuned version of pyannote/segmentation-3.0 on the objects76/synthetic-ja4-speaker-overlap-6400 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3024
  • Der: 0.0934
  • False Alarm: 0.0422
  • Missed Detection: 0.0401
  • Confusion: 0.0111

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 2048
  • eval_batch_size: 2048
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • num_epochs: 200

Training results

Training Loss Epoch Step Confusion Der False Alarm Validation Loss Missed Detection
No log 1.0 7 0.0611 0.2939 0.1347 0.9642 0.0982
No log 2.0 14 0.0771 0.2589 0.0527 0.8482 0.1291
No log 3.0 21 0.0839 0.2499 0.0303 0.8020 0.1358
0.8969 4.0 28 0.0664 0.2162 0.0686 0.7508 0.0813
0.8969 5.0 35 0.0654 0.2029 0.0680 0.6863 0.0695
0.8969 6.0 42 0.0615 0.1919 0.0725 0.6313 0.0580
0.8969 7.0 49 0.0535 0.1808 0.0752 0.5859 0.0522
0.6817 8.0 56 0.0468 0.1698 0.0708 0.5505 0.0522
0.6817 9.0 63 0.0415 0.1619 0.0694 0.5233 0.0510
0.6817 10.0 70 0.0366 0.1550 0.0688 0.4992 0.0496
0.5316 11.0 77 0.0316 0.1459 0.0634 0.4725 0.0509
0.5316 12.0 84 0.0271 0.1389 0.0608 0.4490 0.0510
0.5316 13.0 91 0.0250 0.1322 0.0556 0.4286 0.0517
0.5316 14.0 98 0.0220 0.1263 0.0544 0.4123 0.0499
0.4403 15.0 105 0.0203 0.1213 0.0523 0.3977 0.0487
0.4403 16.0 112 0.0191 0.1190 0.0536 0.3904 0.0462
0.4403 17.0 119 0.0188 0.1161 0.0484 0.3784 0.0489
0.3873 18.0 126 0.0171 0.1144 0.0520 0.3725 0.0453
0.3873 19.0 133 0.0183 0.1128 0.0458 0.3659 0.0487
0.3873 20.0 140 0.0177 0.1129 0.0516 0.3636 0.0437
0.3873 21.0 147 0.0171 0.1099 0.0470 0.3569 0.0458
0.3577 22.0 154 0.0178 0.1097 0.0451 0.3541 0.0468
0.3577 23.0 161 0.0164 0.1076 0.0495 0.3487 0.0417
0.3577 24.0 168 0.0165 0.1066 0.0459 0.3436 0.0443
0.3417 25.0 175 0.0166 0.1059 0.0446 0.3385 0.0447
0.3417 26.0 182 0.0155 0.1052 0.0487 0.3379 0.0411
0.3417 27.0 189 0.0155 0.1043 0.0443 0.3352 0.0445
0.3417 28.0 196 0.0157 0.1050 0.0464 0.3352 0.0429
0.3257 29.0 203 0.0151 0.1040 0.0474 0.3327 0.0415
0.3257 30.0 210 0.0150 0.1014 0.0419 0.3270 0.0445
0.3257 31.0 217 0.0133 0.1000 0.0451 0.3240 0.0417
0.3257 32.0 224 0.3204 0.0989 0.0425 0.0431 0.0133
0.3111 33.0 231 0.3191 0.0995 0.0439 0.0424 0.0133
0.3111 34.0 238 0.3159 0.0989 0.0431 0.0424 0.0134
0.3111 35.0 245 0.3153 0.0980 0.0433 0.0417 0.0130
0.3077 36.0 252 0.3133 0.0967 0.0409 0.0429 0.0128
0.3077 37.0 259 0.3145 0.0975 0.0418 0.0430 0.0127
0.3077 38.0 266 0.3164 0.0981 0.0417 0.0436 0.0128
0.3077 39.0 273 0.3145 0.0978 0.0402 0.0446 0.0130
0.3047 40.0 280 0.3138 0.0974 0.0441 0.0406 0.0128
0.3047 41.0 287 0.3182 0.0979 0.0398 0.0450 0.0131
0.3047 42.0 294 0.3117 0.0955 0.0393 0.0434 0.0128
0.3023 43.0 301 0.3078 0.0953 0.0408 0.0421 0.0124
0.3023 44.0 308 0.3103 0.0969 0.0409 0.0435 0.0126
0.3023 45.0 315 0.3067 0.0949 0.0379 0.0447 0.0124
0.3023 46.0 322 0.3076 0.0950 0.0434 0.0395 0.0121
0.295 47.0 329 0.3035 0.0937 0.0384 0.0430 0.0123
0.295 48.0 336 0.3054 0.0954 0.0411 0.0419 0.0124
0.295 49.0 343 0.3038 0.0937 0.0391 0.0428 0.0118
0.2845 50.0 350 0.3048 0.0942 0.0409 0.0415 0.0118
0.2845 51.0 357 0.3039 0.0942 0.0388 0.0435 0.0119
0.2845 52.0 364 0.3029 0.0935 0.0403 0.0416 0.0116
0.2845 53.0 371 0.2978 0.0922 0.0389 0.0418 0.0115
0.2796 54.0 378 0.2995 0.0933 0.0422 0.0399 0.0111
0.2796 55.0 385 0.2984 0.0922 0.0358 0.0448 0.0115
0.2796 56.0 392 0.3003 0.0933 0.0423 0.0390 0.0120
0.2796 57.0 399 0.3000 0.0933 0.0393 0.0417 0.0123
0.2768 58.0 406 0.3037 0.0942 0.0428 0.0395 0.0120
0.2768 59.0 413 0.2987 0.0921 0.0366 0.0438 0.0117
0.2768 60.0 420 0.3036 0.0946 0.0472 0.0362 0.0113
0.2774 61.0 427 0.3010 0.0929 0.0384 0.0431 0.0114
0.2774 62.0 434 0.3014 0.0924 0.0401 0.0409 0.0114
0.2774 63.0 441 0.3024 0.0934 0.0422 0.0401 0.0111

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
3
Safetensors
Model size
1.47M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for objects76/ft-ja4-2.25sec-250513_1443

Finetuned
(69)
this model

Dataset used to train objects76/ft-ja4-2.25sec-250513_1443