|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
license_link: https://huggingface.co/Qwen/Qwen3-8B/blob/main/LICENSE |
|
pipeline_tag: text-generation |
|
base_model: mlabonne/Qwen3-8B-abliterated |
|
--- |
|
|
|
Int8 quant for optimized performance on Ampere. |
|
|
|
# usage |
|
|
|
```shell |
|
uv venv --python 3.12 |
|
|
|
uv pip install "sglang[all]" --find-links https://flashinfer.ai/whl/cu124/torch2.5/flashinfer-python |
|
|
|
uv run python -m sglang.launch_server --model-path nytopop/Qwen3-8B-abliterated.w8a8 --quantization w8a8_int8 --reasoning-parser qwen3 |
|
``` |
|
|
|
# creation |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
from datasets import load_dataset |
|
from llmcompressor import oneshot |
|
from llmcompressor.modifiers.quantization import GPTQModifier |
|
from llmcompressor.modifiers.smoothquant import SmoothQuantModifier |
|
from llmcompressor.transformers.compression.helpers import calculate_offload_device_map |
|
|
|
model_id = "mlabonne/Qwen3-8B-abliterated" |
|
model_out = model_id.split("/")[1] + ".w8a8" |
|
|
|
num_samples = 256 |
|
max_seq_len = 4096 |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
|
|
def preprocess_fn(example): |
|
return {"text": tokenizer.apply_chat_template(example["messages"], add_generation_prompt=False, tokenize=False)} |
|
|
|
ds = load_dataset("neuralmagic/LLM_compression_calibration", split="train") |
|
ds = ds.shuffle().select(range(num_samples)) |
|
ds = ds.map(preprocess_fn) |
|
|
|
device_map = calculate_offload_device_map( |
|
model_id, reserve_for_hessians=True, num_gpus=1, torch_dtype="bfloat16" |
|
) |
|
|
|
for k, v in device_map.items(): |
|
if v == 'disk': |
|
device_map[k] = 'cpu' |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
device_map=device_map, |
|
torch_dtype="bfloat16", |
|
) |
|
|
|
recipe = [ |
|
SmoothQuantModifier( |
|
smoothing_strength=0.7, |
|
), |
|
GPTQModifier( |
|
sequential=True, |
|
targets="Linear", |
|
scheme="W8A8", |
|
ignore=["lm_head", "re:.*mlp.gate$"], |
|
dampening_frac=0.05, |
|
), |
|
] |
|
|
|
oneshot( |
|
model=model, |
|
dataset=ds, |
|
recipe=recipe, |
|
max_seq_length=max_seq_len, |
|
num_calibration_samples=num_samples, |
|
output_dir=model_out, |
|
) |
|
``` |
|
|