qwen3-int4
Collection
w4a16 quants
•
3 items
•
Updated
Currently, upstream sglang doesn't load this quant correctly due to a few minor issues. Until upstream is fixed, a working fork is available at https://github.com/nytopop/sglang/tree/qwen-30b-a3b:
uv venv --python 3.12
# vllm is needed to load w4a16 quant scheme
uv pip install "vllm>=0.8.5"
# use patched sglang from git
uv pip install "git+https://github.com/nytopop/sglang.git@qwen-30b-a3b#subdirectory=python[all]" --find-links https://flashinfer.ai/whl/cu124/torch2.5/flashinfer-python
# run
uv run python -m sglang.launch_server --model-path nytopop/Qwen3-30B-A3B.w4a16 --reasoning-parser qwen3 --dtype float16
from transformers import AutoModelForCausalLM
from llmcompressor import oneshot
from llmcompressor.modifiers.quantization import QuantizationModifier
from llmcompressor.transformers.compression.helpers import calculate_offload_device_map
model_id = "Qwen/Qwen3-30B-A3B"
model_out = model_id.split("/")[1] + ".w4a16"
device_map = calculate_offload_device_map(
model_id, reserve_for_hessians=False, num_gpus=1, torch_dtype="bfloat16"
)
for k, v in device_map.items():
if v == 'disk':
device_map[k] = 'cpu'
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map=device_map,
torch_dtype="bfloat16",
)
recipe = QuantizationModifier(
targets="Linear",
scheme="W4A16",
ignore=["lm_head", "re:.*mlp.gate$", "re:.*mlp.shared_expert_gate$"],
)
oneshot(model=model, recipe=recipe, output_dir=model_out)