metadata
library_name: transformers
license: apache-2.0
license_link: https://huggingface.co/Qwen/Qwen3-14B/blob/main/LICENSE
pipeline_tag: text-generation
base_model: mlabonne/Qwen3-14B-abliterated
Int8 quant for optimized performance on Ampere.
usage
uv venv --python 3.12
uv pip install "sglang[all]" --find-links https://flashinfer.ai/whl/cu124/torch2.5/flashinfer-python
uv run python -m sglang.launch_server --model-path nytopop/Qwen3-14B-abliterated.w8a8 --quantization w8a8_int8 --reasoning-parser qwen3
creation
from transformers import AutoTokenizer, AutoModelForCausalLM
from datasets import load_dataset
from llmcompressor import oneshot
from llmcompressor.modifiers.quantization import GPTQModifier
from llmcompressor.modifiers.smoothquant import SmoothQuantModifier
from llmcompressor.transformers.compression.helpers import calculate_offload_device_map
model_id = "mlabonne/Qwen3-14B-abliterated"
model_out = model_id.split("/")[1] + ".w8a8"
num_samples = 256
max_seq_len = 4096
tokenizer = AutoTokenizer.from_pretrained(model_id)
def preprocess_fn(example):
return {"text": tokenizer.apply_chat_template(example["messages"], add_generation_prompt=False, tokenize=False)}
ds = load_dataset("neuralmagic/LLM_compression_calibration", split="train")
ds = ds.shuffle().select(range(num_samples))
ds = ds.map(preprocess_fn)
device_map = calculate_offload_device_map(
model_id, reserve_for_hessians=True, num_gpus=1, torch_dtype="bfloat16"
)
for k, v in device_map.items():
if v == 'disk':
device_map[k] = 'cpu'
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map=device_map,
torch_dtype="bfloat16",
)
recipe = [
SmoothQuantModifier(
smoothing_strength=0.7,
),
GPTQModifier(
sequential=True,
targets="Linear",
scheme="W8A8",
ignore=["lm_head", "re:.*mlp.gate$"],
dampening_frac=0.05,
),
]
oneshot(
model=model,
dataset=ds,
recipe=recipe,
max_seq_length=max_seq_len,
num_calibration_samples=num_samples,
output_dir=model_out,
)