Text Generation
Transformers
Safetensors
PyTorch
nvidia
nemotron-h
File size: 12,119 Bytes
d63ce32
 
4736a98
d63ce32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d8fd0b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
# coding=utf-8
# Copyright 2024 AI21 Labs Ltd. and the HuggingFace Inc. team. All rights reserved.
# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""NemotronH model configuration"""

import re

from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging


logger = logging.get_logger(__name__)


class NemotronHConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`NemotronHModel`]. It is used to instantiate a
    NemotronH model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the NemotronH-v0.1 model.

    [todo](todo)

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 131072):
            Vocabulary size of the NemotronH model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`NemotronHModel`]
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether the model's input and output word embeddings should be tied. Note that this is only relevant if the
            model has a output word embedding layer.
        hidden_size (`int`, *optional*, defaults to 4096):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 21504):
            Dimension of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 52):
            Number of hidden layers in the Transformer encoder.
        hybrid_override_pattern (`str`, *optional*, defaults to `"M-M-M-M*-M-M-M-M-M*-M-M-M-M-M*-M-M-M-M-M*-M-M-M-M-M-"`):
            The pattern of the hybrid model. The pattern is a string of characters where each character represents M: Mamba2, *: Attention, -: MLP
        num_attention_heads (`int`, *optional*, defaults to 32):
            Number of attention heads for each attention layer in the Transformer encoder.
        attention_head_dim (`int`, *optional*, defaults to 128):
            Dimension of each attention head.
        num_key_value_heads (`int`, *optional*, defaults to 8):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used.
        mlp_hidden_act (`str`, *optional*, defaults to "relu2"):
            The non-linear activation function in the MLP layers.
        attention_bias (`bool`, *optional*, defaults to `False`):
            Whether to use bias in attention layers.
        mlp_bias (`bool`, *optional*, defaults to `False`):
            Whether to use bias in MLP layers.
        use_bias (`bool`, *optional*, defaults to `False`):
            Whether to use bias in the model.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
            The epsilon used by the layer normalization layers.
        residual_in_fp32 (`bool`, *optional*, defaults to `False`):
            Whether or not residuals should be in `float32`. If set to `False` residuals will keep the same `dtype` as the rest of the model.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        num_logits_to_keep (`int` or `None`, *optional*, defaults to 1):
            Number of prompt logits to calculate during generation. If `None`, all logits will be calculated. If an
            integer value, only last `num_logits_to_keep` logits will be calculated.
        pad_token_id (`int`, *optional*, defaults to 0):
            The id of the padding token.
        bos_token_id (`int`, *optional*, defaults to 1):
            The id of the "beginning-of-sequence" token.
        eos_token_id (`int`, *optional*, defaults to 2):
            The id of the "end-of-sequence" token.
        sliding_window (`int`, *optional*, defaults to None):
            Sliding window attention window size.
        max_position_embeddings (`int`, *optional*, defaults to 4096):
            The maximum sequence length that this model might ever be used with.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        hidden_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the hidden states.
        use_mamba_kernels (`bool`, *optional*, defaults to `True`):
            Flag indicating whether or not to use the fast mamba kernels. These are available only if `mamba-ssm` and
            `causal-conv1d` are installed, and the mamba modules are running on a CUDA device.
        ssm_state_size (`int`, *optional*, defaults to 128):
            The dimension of the mamba state space latents.
        mamba_num_heads (`int`, *optional*, defaults to 128):
            Number of heads in Mamba layers.
        mamba_n_groups (`int`, *optional*, defaults to 8):
            Number of groups in Mamba layers.
        mamba_head_dim (`int`, *optional*, defaults to 64):
            Dimension of each Mamba head.
        mamba_d_conv (`int`, *optional*, defaults to 4):
            The size of the mamba convolution kernel.
        mamba_expand (`int`, *optional*, defaults to 2):
            Expanding factor used to determine the mamba intermediate size.
        mamba_hidden_act (`str`, *optional*, defaults to "silu"):
            The non-linear activation function in the Mamba layers.
        mamba_dt_min (`float`, *optional*, defaults to 0.001):
            Minimum value for the time step in Mamba.
        mamba_dt_max (`float`, *optional*, defaults to 0.1):
            Maximum value for the time step in Mamba.
        mamba_dt_limit (`tuple`, *optional*, defaults to (0.0, float("inf"))):
            Limits for the time step in Mamba.
        mamba_dt_init_floor (`float`, *optional*, defaults to 1e-4):
            Floor value for time step initialization in Mamba.
        mamba_conv_bias (`bool`, *optional*, defaults to `True`):
            Whether to use bias in the convolution layer of the mamba mixer block.
        mamba_proj_bias (`bool`, *optional*, defaults to `False`):
            Whether to use bias in the input and output projections of the mamba mixer block.
        mamba_chunk_size (`int`, *optional*, defaults to 256):
            Size of chunks for Mamba processing.
        rescale_prenorm_residual (`bool`, *optional*, defaults to `True`):
            Whether to rescale the pre-normalization residual connections.
    """

    model_type = "nemotron_h"
    keys_to_ignore_at_inference = ["past_key_values"]

    def __init__(
        self,
        vocab_size=131072,
        tie_word_embeddings=False,
        hidden_size=4096,
        intermediate_size=21504,
        num_hidden_layers=52,
        hybrid_override_pattern="M-M-M-M*-M-M-M-M-M*-M-M-M-M-M*-M-M-M-M-M*-M-M-M-M-M-",
        num_attention_heads=32,
        attention_head_dim=128,
        num_key_value_heads=8,  # nemo: num_query_groups
        mlp_hidden_act="relu2",
        attention_bias=False,
        mlp_bias=False,
        use_bias=False,
        initializer_range=0.02, # nemo: init_method_std
        layer_norm_epsilon=1e-5, # nemo: layernorm_epsilon
        residual_in_fp32=False,  #  Megatron Core default value
        use_cache=True,
        num_logits_to_keep=1,
        pad_token_id=0,
        bos_token_id=1,
        eos_token_id=2,
        sliding_window=None,
        max_position_embeddings=4096,
        attention_dropout=0.0,
        hidden_dropout=0.0, # * ADDED
        use_mamba_kernels=True,
        ssm_state_size=128, # mamba_state_size
        mamba_num_heads=128,
        mamba_n_groups=8,  # nemo: mamba_ssm_ngroups = num_heads
        mamba_head_dim=64,
        mamba_d_conv=4,
        mamba_expand=2,
        mamba_hidden_act="silu",
        mamba_dt_min=0.001,
        mamba_dt_max=0.1,
        mamba_dt_limit=(0.0, float("inf")),
        mamba_dt_init_floor=1e-4,
        mamba_conv_bias=True,
        mamba_proj_bias=False,
        mamba_chunk_size=256,
        rescale_prenorm_residual=True,
        **kwargs,
    ):
        self.vocab_size = vocab_size
        self.tie_word_embeddings = tie_word_embeddings
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.num_hidden_layers = num_hidden_layers
        self.hybrid_override_pattern = hybrid_override_pattern
        self.num_attention_heads = num_attention_heads
        self.attention_head_dim = attention_head_dim
        self.sliding_window = sliding_window
        self.max_position_embeddings = max_position_embeddings
        self.attention_dropout = attention_dropout
        self.hidden_dropout = hidden_dropout

        # Validate hybrid_override_pattern
        # M: Mamba2, *: Attention, -: MLP
        assert len(self.hybrid_override_pattern) == self.num_hidden_layers, "hybrid_override_pattern must have the same length as num_hidden_layers"
        assert re.match(r"^[*-M]+$", self.hybrid_override_pattern), "hybrid_override_pattern must only contain characters 'M', '*', or '-'"

        # for backward compatibility
        if num_key_value_heads is None:
            num_key_value_heads = num_attention_heads

        self.num_key_value_heads = num_key_value_heads
        self.mlp_hidden_act = mlp_hidden_act
        self.attention_bias = attention_bias
        self.mlp_bias = mlp_bias
        self.use_bias = use_bias
        self.initializer_range = initializer_range
        self.layer_norm_epsilon = layer_norm_epsilon
        self.residual_in_fp32 = residual_in_fp32

        self.use_cache = use_cache
        self.num_logits_to_keep = num_logits_to_keep

        self.use_mamba_kernels = use_mamba_kernels
        self.n_groups = mamba_n_groups
        self.mamba_head_dim = mamba_head_dim
        self.ssm_state_size = ssm_state_size
        self.mamba_num_heads = mamba_num_heads
        self.conv_kernel = mamba_d_conv
        self.expand = mamba_expand
        self.mamba_hidden_act = mamba_hidden_act
        self.time_step_min = mamba_dt_min
        self.time_step_max = mamba_dt_max
        self.time_step_limit = mamba_dt_limit
        self.time_step_floor = mamba_dt_init_floor
        self.use_conv_bias = mamba_conv_bias
        self.mamba_proj_bias = mamba_proj_bias
        self.chunk_size = mamba_chunk_size
        self.rescale_prenorm_residual = rescale_prenorm_residual

        super().__init__(
            pad_token_id=pad_token_id,
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            tie_word_embeddings=tie_word_embeddings,
            **kwargs,
        )

    @property
    def layers_block_type(self):
        return [
            "mamba" if self.hybrid_override_pattern[i] == "M" else
            "attention" if self.hybrid_override_pattern[i] == "*" else "mlp"
            for i in range(self.num_hidden_layers)]