Text Generation
Transformers
Safetensors
PyTorch
nvidia
nemotron-h
suhara commited on
Commit
d63ce32
·
verified ·
1 Parent(s): d118521

Add files using upload-large-folder tool

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "NemotronHForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "attention_head_dim": 128,
8
+ "auto_map": {
9
+ "AutoConfig": "configuration_nemotron_h.NemotronHConfig",
10
+ "AutoModelForCausalLM": "modeling_nemotron_h.NemotronHForCausalLM"
11
+ },
12
+ "bos_token_id": 1,
13
+ "chunk_size": 256,
14
+ "conv_kernel": 4,
15
+ "eos_token_id": 2,
16
+ "expand": 2,
17
+ "hidden_dropout": 0.0,
18
+ "hidden_size": 8192,
19
+ "hybrid_override_pattern": "M-M-M-M-M-M-M-M-M*-M-M-M-M-M-M-M-M-M-M*-M-M-M-M-M*-M-M-M-M-M*-M-M-M-M-M-M-M---MM---M-M*-M-M-M-M-M-",
20
+ "initializer_range": 0.02,
21
+ "intermediate_size": 30720,
22
+ "layer_norm_epsilon": 1e-05,
23
+ "mamba_head_dim": 64,
24
+ "mamba_hidden_act": "silu",
25
+ "mamba_num_heads": 256,
26
+ "mamba_proj_bias": false,
27
+ "max_position_embeddings": 8192,
28
+ "mlp_bias": false,
29
+ "mlp_hidden_act": "relu2",
30
+ "model_type": "nemotron_h",
31
+ "n_groups": 8,
32
+ "num_attention_heads": 64,
33
+ "num_hidden_layers": 98,
34
+ "num_key_value_heads": 8,
35
+ "num_logits_to_keep": 1,
36
+ "pad_token_id": 0,
37
+ "rescale_prenorm_residual": true,
38
+ "residual_in_fp32": false,
39
+ "rms_norm_eps": 1e-05,
40
+ "sliding_window": null,
41
+ "ssm_state_size": 256,
42
+ "tie_word_embeddings": false,
43
+ "time_step_floor": 0.0001,
44
+ "time_step_limit": [
45
+ 0.0,
46
+ Infinity
47
+ ],
48
+ "time_step_max": 0.1,
49
+ "time_step_min": 0.001,
50
+ "time_step_rank": 512,
51
+ "torch_dtype": "bfloat16",
52
+ "transformers_version": "4.48.0.dev0",
53
+ "use_bias": false,
54
+ "use_cache": true,
55
+ "use_conv_bias": true,
56
+ "use_mamba_kernels": true,
57
+ "vocab_size": 131072
58
+ }
configuration_nemotron_h.py ADDED
@@ -0,0 +1,242 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 AI21 Labs Ltd. and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """NemotronH model configuration"""
16
+
17
+ import re
18
+
19
+ from transformers.configuration_utils import PretrainedConfig
20
+ from transformers.utils import logging
21
+
22
+
23
+ logger = logging.get_logger(__name__)
24
+
25
+
26
+ class NemotronHConfig(PretrainedConfig):
27
+ r"""
28
+ This is the configuration class to store the configuration of a [`NemotronHModel`]. It is used to instantiate a
29
+ NemotronH model according to the specified arguments, defining the model architecture. Instantiating a configuration
30
+ with the defaults will yield a similar configuration to that of the NemotronH-v0.1 model.
31
+
32
+ [todo](todo)
33
+
34
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
35
+ documentation from [`PretrainedConfig`] for more information.
36
+
37
+
38
+ Args:
39
+ vocab_size (`int`, *optional*, defaults to 131072):
40
+ Vocabulary size of the NemotronH model. Defines the number of different tokens that can be represented by the
41
+ `inputs_ids` passed when calling [`NemotronHModel`]
42
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
43
+ Whether the model's input and output word embeddings should be tied. Note that this is only relevant if the
44
+ model has a output word embedding layer.
45
+ hidden_size (`int`, *optional*, defaults to 4096):
46
+ Dimension of the hidden representations.
47
+ intermediate_size (`int`, *optional*, defaults to 21504):
48
+ Dimension of the MLP representations.
49
+ num_hidden_layers (`int`, *optional*, defaults to 52):
50
+ Number of hidden layers in the Transformer encoder.
51
+ hybrid_override_pattern (`str`, *optional*, defaults to `"M-M-M-M*-M-M-M-M-M*-M-M-M-M-M*-M-M-M-M-M*-M-M-M-M-M-"`):
52
+ The pattern of the hybrid model. The pattern is a string of characters where each character represents M: Mamba2, *: Attention, -: MLP
53
+ num_attention_heads (`int`, *optional*, defaults to 32):
54
+ Number of attention heads for each attention layer in the Transformer encoder.
55
+ attention_head_dim (`int`, *optional*, defaults to 128):
56
+ Dimension of each attention head.
57
+ num_key_value_heads (`int`, *optional*, defaults to 8):
58
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
59
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
60
+ `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used.
61
+ mlp_hidden_act (`str`, *optional*, defaults to "relu2"):
62
+ The non-linear activation function in the MLP layers.
63
+ attention_bias (`bool`, *optional*, defaults to `False`):
64
+ Whether to use bias in attention layers.
65
+ mlp_bias (`bool`, *optional*, defaults to `False`):
66
+ Whether to use bias in MLP layers.
67
+ use_bias (`bool`, *optional*, defaults to `False`):
68
+ Whether to use bias in the model.
69
+ initializer_range (`float`, *optional*, defaults to 0.02):
70
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
71
+ layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
72
+ The epsilon used by the layer normalization layers.
73
+ residual_in_fp32 (`bool`, *optional*, defaults to `False`):
74
+ Whether or not residuals should be in `float32`. If set to `False` residuals will keep the same `dtype` as the rest of the model.
75
+ use_cache (`bool`, *optional*, defaults to `True`):
76
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
77
+ relevant if `config.is_decoder=True`.
78
+ num_logits_to_keep (`int` or `None`, *optional*, defaults to 1):
79
+ Number of prompt logits to calculate during generation. If `None`, all logits will be calculated. If an
80
+ integer value, only last `num_logits_to_keep` logits will be calculated.
81
+ pad_token_id (`int`, *optional*, defaults to 0):
82
+ The id of the padding token.
83
+ bos_token_id (`int`, *optional*, defaults to 1):
84
+ The id of the "beginning-of-sequence" token.
85
+ eos_token_id (`int`, *optional*, defaults to 2):
86
+ The id of the "end-of-sequence" token.
87
+ sliding_window (`int`, *optional*, defaults to None):
88
+ Sliding window attention window size.
89
+ max_position_embeddings (`int`, *optional*, defaults to 4096):
90
+ The maximum sequence length that this model might ever be used with.
91
+ attention_dropout (`float`, *optional*, defaults to 0.0):
92
+ The dropout ratio for the attention probabilities.
93
+ hidden_dropout (`float`, *optional*, defaults to 0.0):
94
+ The dropout ratio for the hidden states.
95
+ use_mamba_kernels (`bool`, *optional*, defaults to `True`):
96
+ Flag indicating whether or not to use the fast mamba kernels. These are available only if `mamba-ssm` and
97
+ `causal-conv1d` are installed, and the mamba modules are running on a CUDA device.
98
+ ssm_state_size (`int`, *optional*, defaults to 128):
99
+ The dimension of the mamba state space latents.
100
+ mamba_num_heads (`int`, *optional*, defaults to 128):
101
+ Number of heads in Mamba layers.
102
+ mamba_n_groups (`int`, *optional*, defaults to 8):
103
+ Number of groups in Mamba layers.
104
+ mamba_head_dim (`int`, *optional*, defaults to 64):
105
+ Dimension of each Mamba head.
106
+ mamba_d_conv (`int`, *optional*, defaults to 4):
107
+ The size of the mamba convolution kernel.
108
+ mamba_expand (`int`, *optional*, defaults to 2):
109
+ Expanding factor used to determine the mamba intermediate size.
110
+ mamba_hidden_act (`str`, *optional*, defaults to "silu"):
111
+ The non-linear activation function in the Mamba layers.
112
+ mamba_dt_min (`float`, *optional*, defaults to 0.001):
113
+ Minimum value for the time step in Mamba.
114
+ mamba_dt_max (`float`, *optional*, defaults to 0.1):
115
+ Maximum value for the time step in Mamba.
116
+ mamba_dt_limit (`tuple`, *optional*, defaults to (0.0, float("inf"))):
117
+ Limits for the time step in Mamba.
118
+ mamba_dt_init_floor (`float`, *optional*, defaults to 1e-4):
119
+ Floor value for time step initialization in Mamba.
120
+ mamba_conv_bias (`bool`, *optional*, defaults to `True`):
121
+ Whether to use bias in the convolution layer of the mamba mixer block.
122
+ mamba_proj_bias (`bool`, *optional*, defaults to `False`):
123
+ Whether to use bias in the input and output projections of the mamba mixer block.
124
+ mamba_chunk_size (`int`, *optional*, defaults to 256):
125
+ Size of chunks for Mamba processing.
126
+ rescale_prenorm_residual (`bool`, *optional*, defaults to `True`):
127
+ Whether to rescale the pre-normalization residual connections.
128
+ """
129
+
130
+ model_type = "nemotron_h"
131
+ keys_to_ignore_at_inference = ["past_key_values"]
132
+
133
+ def __init__(
134
+ self,
135
+ vocab_size=131072,
136
+ tie_word_embeddings=False,
137
+ hidden_size=4096,
138
+ intermediate_size=21504,
139
+ num_hidden_layers=52,
140
+ hybrid_override_pattern="M-M-M-M*-M-M-M-M-M*-M-M-M-M-M*-M-M-M-M-M*-M-M-M-M-M-",
141
+ num_attention_heads=32,
142
+ attention_head_dim=128,
143
+ num_key_value_heads=8, # nemo: num_query_groups
144
+ mlp_hidden_act="relu2",
145
+ attention_bias=False,
146
+ mlp_bias=False,
147
+ use_bias=False,
148
+ initializer_range=0.02, # nemo: init_method_std
149
+ layer_norm_epsilon=1e-5, # nemo: layernorm_epsilon
150
+ residual_in_fp32=False, # Megatron Core default value
151
+ use_cache=True,
152
+ num_logits_to_keep=1,
153
+ pad_token_id=0,
154
+ bos_token_id=1,
155
+ eos_token_id=2,
156
+ sliding_window=None,
157
+ max_position_embeddings=4096,
158
+ attention_dropout=0.0,
159
+ hidden_dropout=0.0, # * ADDED
160
+ use_mamba_kernels=True,
161
+ ssm_state_size=128, # mamba_state_size
162
+ mamba_num_heads=128,
163
+ mamba_n_groups=8, # nemo: mamba_ssm_ngroups = num_heads
164
+ mamba_head_dim=64,
165
+ mamba_d_conv=4,
166
+ mamba_expand=2,
167
+ mamba_hidden_act="silu",
168
+ mamba_dt_min=0.001,
169
+ mamba_dt_max=0.1,
170
+ mamba_dt_limit=(0.0, float("inf")),
171
+ mamba_dt_init_floor=1e-4,
172
+ mamba_conv_bias=True,
173
+ mamba_proj_bias=False,
174
+ mamba_chunk_size=256,
175
+ rescale_prenorm_residual=True,
176
+ **kwargs,
177
+ ):
178
+ self.vocab_size = vocab_size
179
+ self.tie_word_embeddings = tie_word_embeddings
180
+ self.hidden_size = hidden_size
181
+ self.intermediate_size = intermediate_size
182
+ self.num_hidden_layers = num_hidden_layers
183
+ self.hybrid_override_pattern = hybrid_override_pattern
184
+ self.num_attention_heads = num_attention_heads
185
+ self.attention_head_dim = attention_head_dim
186
+ self.sliding_window = sliding_window
187
+ self.max_position_embeddings = max_position_embeddings
188
+ self.attention_dropout = attention_dropout
189
+ self.hidden_dropout = hidden_dropout
190
+
191
+ # Validate hybrid_override_pattern
192
+ # M: Mamba2, *: Attention, -: MLP
193
+ assert len(self.hybrid_override_pattern) == self.num_hidden_layers, "hybrid_override_pattern must have the same length as num_hidden_layers"
194
+ assert re.match(r"^[*-M]+$", self.hybrid_override_pattern), "hybrid_override_pattern must only contain characters 'M', '*', or '-'"
195
+
196
+ # for backward compatibility
197
+ if num_key_value_heads is None:
198
+ num_key_value_heads = num_attention_heads
199
+
200
+ self.num_key_value_heads = num_key_value_heads
201
+ self.mlp_hidden_act = mlp_hidden_act
202
+ self.attention_bias = attention_bias
203
+ self.mlp_bias = mlp_bias
204
+ self.use_bias = use_bias
205
+ self.initializer_range = initializer_range
206
+ self.layer_norm_epsilon = layer_norm_epsilon
207
+ self.residual_in_fp32 = residual_in_fp32
208
+
209
+ self.use_cache = use_cache
210
+ self.num_logits_to_keep = num_logits_to_keep
211
+
212
+ self.use_mamba_kernels = use_mamba_kernels
213
+ self.n_groups = mamba_n_groups
214
+ self.mamba_head_dim = mamba_head_dim
215
+ self.ssm_state_size = ssm_state_size
216
+ self.mamba_num_heads = mamba_num_heads
217
+ self.conv_kernel = mamba_d_conv
218
+ self.expand = mamba_expand
219
+ self.mamba_hidden_act = mamba_hidden_act
220
+ self.time_step_min = mamba_dt_min
221
+ self.time_step_max = mamba_dt_max
222
+ self.time_step_limit = mamba_dt_limit
223
+ self.time_step_floor = mamba_dt_init_floor
224
+ self.use_conv_bias = mamba_conv_bias
225
+ self.mamba_proj_bias = mamba_proj_bias
226
+ self.chunk_size = mamba_chunk_size
227
+ self.rescale_prenorm_residual = rescale_prenorm_residual
228
+
229
+ super().__init__(
230
+ pad_token_id=pad_token_id,
231
+ bos_token_id=bos_token_id,
232
+ eos_token_id=eos_token_id,
233
+ tie_word_embeddings=tie_word_embeddings,
234
+ **kwargs,
235
+ )
236
+
237
+ @property
238
+ def layers_block_type(self):
239
+ return [
240
+ "mamba" if self.hybrid_override_pattern[i] == "M" else
241
+ "attention" if self.hybrid_override_pattern[i] == "*" else "mlp"
242
+ for i in range(self.num_hidden_layers)]
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": [2, 11, 6250],
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.48.0.dev0"
7
+ }
model-00001-of-00020.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ee12526ce592696c83dee2f2ce1f3ba4a4eb9cb0c888b84e0bf14e864b44267a
3
+ size 4907881968
model-00002-of-00020.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f86fdb0d59f464e8642b09902f8fad0afcc31ffd43d4cdde4f47bbc4c1017b39
3
+ size 4773887960
model-00003-of-00020.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:871ed0cc60821fcd003ee022c6c6f1bd6668e7354a096b310f05387b11113e9c
3
+ size 4643690512
model-00004-of-00020.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1938ab662ef99120529a5f46b576dec3d1852cb89c9cd5525d7d72c840bbe74d
3
+ size 4572354880
model-00005-of-00020.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec50a683261306667317750925b331e092d1af3417452cb4e27e7f9f41b10bb9
3
+ size 4878778464
model-00006-of-00020.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e3e8e530fc54dafb47c1882f0c6d31528d5c43fe036882614b30e8147b0c4fa0
3
+ size 4538800096
model-00007-of-00020.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:04c7c534d9970adfd7a207aa6ccebe78f91308ee1b8639c769663d197b8659cd
3
+ size 4878778464
model-00008-of-00020.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4b083f46b345149c2b054ba7499c8041d831711620ed41bc84fa723ead20ac6
3
+ size 4840806936
model-00009-of-00020.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13759a54a7bc9c346618d0e673f7f5de458fbcd5a3f80d6d034cf986c7500a77
3
+ size 4878778464
model-00010-of-00020.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8e726da14d657fbd6a1ba5982e3cbd60b6ab81ec19a4346a79b4d744fb8cad17
3
+ size 4840806936
model-00011-of-00020.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:78d4bad4b7cf0d9df376ee35911a49e6e920f1fd101d231c18ccc5c822ff1932
3
+ size 4878778464
model-00012-of-00020.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:23d8e9fa492c35ca9f2757becf797c4eb8ae5726307dc4c3e813791d620c7fd2
3
+ size 4840806936
model-00013-of-00020.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:64a1159adabc1219e541de2cbcc2f81552c026d59b211648b194e4cb869ccea0
3
+ size 4878778464
model-00014-of-00020.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b705abfd774daa855c9c9f6e0fe8e0b27d27a19ae62fedfa5ff54cbba260d23a
3
+ size 4538800096
model-00015-of-00020.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2edfadd560412f94e22356e91ffccd85103ee38152e63a00e085fca5274d0227
3
+ size 4773681112
model-00016-of-00020.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ae0f0e660e7e6286d42502ca67c8f32982df6ab57bd3f6baf2b34dc6669cdf43
3
+ size 4773681120
model-00017-of-00020.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9d09feccc7cb89afdd75f6d5de033509f5379b48016f694d08e49297feec3176
3
+ size 4572371368
model-00018-of-00020.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:28ed58a4f22c3560e3b14dcdeb0c60b1e9063f675c5024d7352cff255b202f6e
3
+ size 4773887992
model-00019-of-00020.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b825999e4390588b064a24d289b78f570b80966fc76db7de5de5a2c596084711
3
+ size 4643690576
model-00020-of-00020.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce25b4e4fb698f740d150c6e482025ffc1134d748fbc73348f3a535bd18b6d48
3
+ size 3154133456
model.safetensors.index.json ADDED
@@ -0,0 +1,584 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 93583109632
4
+ },
5
+ "weight_map": {
6
+ "backbone.embeddings.weight": "model-00001-of-00020.safetensors",
7
+ "backbone.layers.0.mixer.A_log": "model-00001-of-00020.safetensors",
8
+ "backbone.layers.0.mixer.D": "model-00001-of-00020.safetensors",
9
+ "backbone.layers.0.mixer.conv1d.bias": "model-00001-of-00020.safetensors",
10
+ "backbone.layers.0.mixer.conv1d.weight": "model-00001-of-00020.safetensors",
11
+ "backbone.layers.0.mixer.dt_bias": "model-00001-of-00020.safetensors",
12
+ "backbone.layers.0.mixer.in_proj.weight": "model-00001-of-00020.safetensors",
13
+ "backbone.layers.0.mixer.norm.weight": "model-00001-of-00020.safetensors",
14
+ "backbone.layers.0.mixer.out_proj.weight": "model-00001-of-00020.safetensors",
15
+ "backbone.layers.0.norm.weight": "model-00001-of-00020.safetensors",
16
+ "backbone.layers.1.mixer.down_proj.weight": "model-00001-of-00020.safetensors",
17
+ "backbone.layers.1.mixer.up_proj.weight": "model-00001-of-00020.safetensors",
18
+ "backbone.layers.1.norm.weight": "model-00001-of-00020.safetensors",
19
+ "backbone.layers.10.mixer.A_log": "model-00003-of-00020.safetensors",
20
+ "backbone.layers.10.mixer.D": "model-00003-of-00020.safetensors",
21
+ "backbone.layers.10.mixer.conv1d.bias": "model-00003-of-00020.safetensors",
22
+ "backbone.layers.10.mixer.conv1d.weight": "model-00003-of-00020.safetensors",
23
+ "backbone.layers.10.mixer.dt_bias": "model-00003-of-00020.safetensors",
24
+ "backbone.layers.10.mixer.in_proj.weight": "model-00003-of-00020.safetensors",
25
+ "backbone.layers.10.mixer.norm.weight": "model-00003-of-00020.safetensors",
26
+ "backbone.layers.10.mixer.out_proj.weight": "model-00003-of-00020.safetensors",
27
+ "backbone.layers.10.norm.weight": "model-00003-of-00020.safetensors",
28
+ "backbone.layers.11.mixer.down_proj.weight": "model-00003-of-00020.safetensors",
29
+ "backbone.layers.11.mixer.up_proj.weight": "model-00003-of-00020.safetensors",
30
+ "backbone.layers.11.norm.weight": "model-00003-of-00020.safetensors",
31
+ "backbone.layers.12.mixer.A_log": "model-00003-of-00020.safetensors",
32
+ "backbone.layers.12.mixer.D": "model-00003-of-00020.safetensors",
33
+ "backbone.layers.12.mixer.conv1d.bias": "model-00003-of-00020.safetensors",
34
+ "backbone.layers.12.mixer.conv1d.weight": "model-00003-of-00020.safetensors",
35
+ "backbone.layers.12.mixer.dt_bias": "model-00003-of-00020.safetensors",
36
+ "backbone.layers.12.mixer.in_proj.weight": "model-00003-of-00020.safetensors",
37
+ "backbone.layers.12.mixer.norm.weight": "model-00003-of-00020.safetensors",
38
+ "backbone.layers.12.mixer.out_proj.weight": "model-00003-of-00020.safetensors",
39
+ "backbone.layers.12.norm.weight": "model-00003-of-00020.safetensors",
40
+ "backbone.layers.13.mixer.down_proj.weight": "model-00004-of-00020.safetensors",
41
+ "backbone.layers.13.mixer.up_proj.weight": "model-00004-of-00020.safetensors",
42
+ "backbone.layers.13.norm.weight": "model-00003-of-00020.safetensors",
43
+ "backbone.layers.14.mixer.A_log": "model-00004-of-00020.safetensors",
44
+ "backbone.layers.14.mixer.D": "model-00004-of-00020.safetensors",
45
+ "backbone.layers.14.mixer.conv1d.bias": "model-00004-of-00020.safetensors",
46
+ "backbone.layers.14.mixer.conv1d.weight": "model-00004-of-00020.safetensors",
47
+ "backbone.layers.14.mixer.dt_bias": "model-00004-of-00020.safetensors",
48
+ "backbone.layers.14.mixer.in_proj.weight": "model-00004-of-00020.safetensors",
49
+ "backbone.layers.14.mixer.norm.weight": "model-00004-of-00020.safetensors",
50
+ "backbone.layers.14.mixer.out_proj.weight": "model-00004-of-00020.safetensors",
51
+ "backbone.layers.14.norm.weight": "model-00004-of-00020.safetensors",
52
+ "backbone.layers.15.mixer.down_proj.weight": "model-00004-of-00020.safetensors",
53
+ "backbone.layers.15.mixer.up_proj.weight": "model-00004-of-00020.safetensors",
54
+ "backbone.layers.15.norm.weight": "model-00004-of-00020.safetensors",
55
+ "backbone.layers.16.mixer.A_log": "model-00004-of-00020.safetensors",
56
+ "backbone.layers.16.mixer.D": "model-00004-of-00020.safetensors",
57
+ "backbone.layers.16.mixer.conv1d.bias": "model-00004-of-00020.safetensors",
58
+ "backbone.layers.16.mixer.conv1d.weight": "model-00004-of-00020.safetensors",
59
+ "backbone.layers.16.mixer.dt_bias": "model-00004-of-00020.safetensors",
60
+ "backbone.layers.16.mixer.in_proj.weight": "model-00004-of-00020.safetensors",
61
+ "backbone.layers.16.mixer.norm.weight": "model-00004-of-00020.safetensors",
62
+ "backbone.layers.16.mixer.out_proj.weight": "model-00004-of-00020.safetensors",
63
+ "backbone.layers.16.norm.weight": "model-00004-of-00020.safetensors",
64
+ "backbone.layers.17.mixer.k_proj.weight": "model-00004-of-00020.safetensors",
65
+ "backbone.layers.17.mixer.o_proj.weight": "model-00004-of-00020.safetensors",
66
+ "backbone.layers.17.mixer.q_proj.weight": "model-00004-of-00020.safetensors",
67
+ "backbone.layers.17.mixer.v_proj.weight": "model-00004-of-00020.safetensors",
68
+ "backbone.layers.17.norm.weight": "model-00004-of-00020.safetensors",
69
+ "backbone.layers.18.mixer.down_proj.weight": "model-00005-of-00020.safetensors",
70
+ "backbone.layers.18.mixer.up_proj.weight": "model-00004-of-00020.safetensors",
71
+ "backbone.layers.18.norm.weight": "model-00004-of-00020.safetensors",
72
+ "backbone.layers.19.mixer.A_log": "model-00005-of-00020.safetensors",
73
+ "backbone.layers.19.mixer.D": "model-00005-of-00020.safetensors",
74
+ "backbone.layers.19.mixer.conv1d.bias": "model-00005-of-00020.safetensors",
75
+ "backbone.layers.19.mixer.conv1d.weight": "model-00005-of-00020.safetensors",
76
+ "backbone.layers.19.mixer.dt_bias": "model-00005-of-00020.safetensors",
77
+ "backbone.layers.19.mixer.in_proj.weight": "model-00005-of-00020.safetensors",
78
+ "backbone.layers.19.mixer.norm.weight": "model-00005-of-00020.safetensors",
79
+ "backbone.layers.19.mixer.out_proj.weight": "model-00005-of-00020.safetensors",
80
+ "backbone.layers.19.norm.weight": "model-00005-of-00020.safetensors",
81
+ "backbone.layers.2.mixer.A_log": "model-00001-of-00020.safetensors",
82
+ "backbone.layers.2.mixer.D": "model-00001-of-00020.safetensors",
83
+ "backbone.layers.2.mixer.conv1d.bias": "model-00001-of-00020.safetensors",
84
+ "backbone.layers.2.mixer.conv1d.weight": "model-00001-of-00020.safetensors",
85
+ "backbone.layers.2.mixer.dt_bias": "model-00001-of-00020.safetensors",
86
+ "backbone.layers.2.mixer.in_proj.weight": "model-00001-of-00020.safetensors",
87
+ "backbone.layers.2.mixer.norm.weight": "model-00001-of-00020.safetensors",
88
+ "backbone.layers.2.mixer.out_proj.weight": "model-00001-of-00020.safetensors",
89
+ "backbone.layers.2.norm.weight": "model-00001-of-00020.safetensors",
90
+ "backbone.layers.20.mixer.down_proj.weight": "model-00005-of-00020.safetensors",
91
+ "backbone.layers.20.mixer.up_proj.weight": "model-00005-of-00020.safetensors",
92
+ "backbone.layers.20.norm.weight": "model-00005-of-00020.safetensors",
93
+ "backbone.layers.21.mixer.A_log": "model-00005-of-00020.safetensors",
94
+ "backbone.layers.21.mixer.D": "model-00005-of-00020.safetensors",
95
+ "backbone.layers.21.mixer.conv1d.bias": "model-00005-of-00020.safetensors",
96
+ "backbone.layers.21.mixer.conv1d.weight": "model-00005-of-00020.safetensors",
97
+ "backbone.layers.21.mixer.dt_bias": "model-00005-of-00020.safetensors",
98
+ "backbone.layers.21.mixer.in_proj.weight": "model-00005-of-00020.safetensors",
99
+ "backbone.layers.21.mixer.norm.weight": "model-00005-of-00020.safetensors",
100
+ "backbone.layers.21.mixer.out_proj.weight": "model-00005-of-00020.safetensors",
101
+ "backbone.layers.21.norm.weight": "model-00005-of-00020.safetensors",
102
+ "backbone.layers.22.mixer.down_proj.weight": "model-00005-of-00020.safetensors",
103
+ "backbone.layers.22.mixer.up_proj.weight": "model-00005-of-00020.safetensors",
104
+ "backbone.layers.22.norm.weight": "model-00005-of-00020.safetensors",
105
+ "backbone.layers.23.mixer.A_log": "model-00005-of-00020.safetensors",
106
+ "backbone.layers.23.mixer.D": "model-00005-of-00020.safetensors",
107
+ "backbone.layers.23.mixer.conv1d.bias": "model-00005-of-00020.safetensors",
108
+ "backbone.layers.23.mixer.conv1d.weight": "model-00005-of-00020.safetensors",
109
+ "backbone.layers.23.mixer.dt_bias": "model-00005-of-00020.safetensors",
110
+ "backbone.layers.23.mixer.in_proj.weight": "model-00005-of-00020.safetensors",
111
+ "backbone.layers.23.mixer.norm.weight": "model-00005-of-00020.safetensors",
112
+ "backbone.layers.23.mixer.out_proj.weight": "model-00006-of-00020.safetensors",
113
+ "backbone.layers.23.norm.weight": "model-00005-of-00020.safetensors",
114
+ "backbone.layers.24.mixer.down_proj.weight": "model-00006-of-00020.safetensors",
115
+ "backbone.layers.24.mixer.up_proj.weight": "model-00006-of-00020.safetensors",
116
+ "backbone.layers.24.norm.weight": "model-00006-of-00020.safetensors",
117
+ "backbone.layers.25.mixer.A_log": "model-00006-of-00020.safetensors",
118
+ "backbone.layers.25.mixer.D": "model-00006-of-00020.safetensors",
119
+ "backbone.layers.25.mixer.conv1d.bias": "model-00006-of-00020.safetensors",
120
+ "backbone.layers.25.mixer.conv1d.weight": "model-00006-of-00020.safetensors",
121
+ "backbone.layers.25.mixer.dt_bias": "model-00006-of-00020.safetensors",
122
+ "backbone.layers.25.mixer.in_proj.weight": "model-00006-of-00020.safetensors",
123
+ "backbone.layers.25.mixer.norm.weight": "model-00006-of-00020.safetensors",
124
+ "backbone.layers.25.mixer.out_proj.weight": "model-00006-of-00020.safetensors",
125
+ "backbone.layers.25.norm.weight": "model-00006-of-00020.safetensors",
126
+ "backbone.layers.26.mixer.down_proj.weight": "model-00006-of-00020.safetensors",
127
+ "backbone.layers.26.mixer.up_proj.weight": "model-00006-of-00020.safetensors",
128
+ "backbone.layers.26.norm.weight": "model-00006-of-00020.safetensors",
129
+ "backbone.layers.27.mixer.A_log": "model-00006-of-00020.safetensors",
130
+ "backbone.layers.27.mixer.D": "model-00006-of-00020.safetensors",
131
+ "backbone.layers.27.mixer.conv1d.bias": "model-00006-of-00020.safetensors",
132
+ "backbone.layers.27.mixer.conv1d.weight": "model-00006-of-00020.safetensors",
133
+ "backbone.layers.27.mixer.dt_bias": "model-00006-of-00020.safetensors",
134
+ "backbone.layers.27.mixer.in_proj.weight": "model-00006-of-00020.safetensors",
135
+ "backbone.layers.27.mixer.norm.weight": "model-00006-of-00020.safetensors",
136
+ "backbone.layers.27.mixer.out_proj.weight": "model-00006-of-00020.safetensors",
137
+ "backbone.layers.27.norm.weight": "model-00006-of-00020.safetensors",
138
+ "backbone.layers.28.mixer.down_proj.weight": "model-00007-of-00020.safetensors",
139
+ "backbone.layers.28.mixer.up_proj.weight": "model-00006-of-00020.safetensors",
140
+ "backbone.layers.28.norm.weight": "model-00006-of-00020.safetensors",
141
+ "backbone.layers.29.mixer.A_log": "model-00007-of-00020.safetensors",
142
+ "backbone.layers.29.mixer.D": "model-00007-of-00020.safetensors",
143
+ "backbone.layers.29.mixer.conv1d.bias": "model-00007-of-00020.safetensors",
144
+ "backbone.layers.29.mixer.conv1d.weight": "model-00007-of-00020.safetensors",
145
+ "backbone.layers.29.mixer.dt_bias": "model-00007-of-00020.safetensors",
146
+ "backbone.layers.29.mixer.in_proj.weight": "model-00007-of-00020.safetensors",
147
+ "backbone.layers.29.mixer.norm.weight": "model-00007-of-00020.safetensors",
148
+ "backbone.layers.29.mixer.out_proj.weight": "model-00007-of-00020.safetensors",
149
+ "backbone.layers.29.norm.weight": "model-00007-of-00020.safetensors",
150
+ "backbone.layers.3.mixer.down_proj.weight": "model-00002-of-00020.safetensors",
151
+ "backbone.layers.3.mixer.up_proj.weight": "model-00002-of-00020.safetensors",
152
+ "backbone.layers.3.norm.weight": "model-00001-of-00020.safetensors",
153
+ "backbone.layers.30.mixer.down_proj.weight": "model-00007-of-00020.safetensors",
154
+ "backbone.layers.30.mixer.up_proj.weight": "model-00007-of-00020.safetensors",
155
+ "backbone.layers.30.norm.weight": "model-00007-of-00020.safetensors",
156
+ "backbone.layers.31.mixer.A_log": "model-00007-of-00020.safetensors",
157
+ "backbone.layers.31.mixer.D": "model-00007-of-00020.safetensors",
158
+ "backbone.layers.31.mixer.conv1d.bias": "model-00007-of-00020.safetensors",
159
+ "backbone.layers.31.mixer.conv1d.weight": "model-00007-of-00020.safetensors",
160
+ "backbone.layers.31.mixer.dt_bias": "model-00007-of-00020.safetensors",
161
+ "backbone.layers.31.mixer.in_proj.weight": "model-00007-of-00020.safetensors",
162
+ "backbone.layers.31.mixer.norm.weight": "model-00007-of-00020.safetensors",
163
+ "backbone.layers.31.mixer.out_proj.weight": "model-00007-of-00020.safetensors",
164
+ "backbone.layers.31.norm.weight": "model-00007-of-00020.safetensors",
165
+ "backbone.layers.32.mixer.down_proj.weight": "model-00007-of-00020.safetensors",
166
+ "backbone.layers.32.mixer.up_proj.weight": "model-00007-of-00020.safetensors",
167
+ "backbone.layers.32.norm.weight": "model-00007-of-00020.safetensors",
168
+ "backbone.layers.33.mixer.A_log": "model-00007-of-00020.safetensors",
169
+ "backbone.layers.33.mixer.D": "model-00007-of-00020.safetensors",
170
+ "backbone.layers.33.mixer.conv1d.bias": "model-00007-of-00020.safetensors",
171
+ "backbone.layers.33.mixer.conv1d.weight": "model-00007-of-00020.safetensors",
172
+ "backbone.layers.33.mixer.dt_bias": "model-00007-of-00020.safetensors",
173
+ "backbone.layers.33.mixer.in_proj.weight": "model-00007-of-00020.safetensors",
174
+ "backbone.layers.33.mixer.norm.weight": "model-00007-of-00020.safetensors",
175
+ "backbone.layers.33.mixer.out_proj.weight": "model-00008-of-00020.safetensors",
176
+ "backbone.layers.33.norm.weight": "model-00007-of-00020.safetensors",
177
+ "backbone.layers.34.mixer.down_proj.weight": "model-00008-of-00020.safetensors",
178
+ "backbone.layers.34.mixer.up_proj.weight": "model-00008-of-00020.safetensors",
179
+ "backbone.layers.34.norm.weight": "model-00008-of-00020.safetensors",
180
+ "backbone.layers.35.mixer.A_log": "model-00008-of-00020.safetensors",
181
+ "backbone.layers.35.mixer.D": "model-00008-of-00020.safetensors",
182
+ "backbone.layers.35.mixer.conv1d.bias": "model-00008-of-00020.safetensors",
183
+ "backbone.layers.35.mixer.conv1d.weight": "model-00008-of-00020.safetensors",
184
+ "backbone.layers.35.mixer.dt_bias": "model-00008-of-00020.safetensors",
185
+ "backbone.layers.35.mixer.in_proj.weight": "model-00008-of-00020.safetensors",
186
+ "backbone.layers.35.mixer.norm.weight": "model-00008-of-00020.safetensors",
187
+ "backbone.layers.35.mixer.out_proj.weight": "model-00008-of-00020.safetensors",
188
+ "backbone.layers.35.norm.weight": "model-00008-of-00020.safetensors",
189
+ "backbone.layers.36.mixer.down_proj.weight": "model-00008-of-00020.safetensors",
190
+ "backbone.layers.36.mixer.up_proj.weight": "model-00008-of-00020.safetensors",
191
+ "backbone.layers.36.norm.weight": "model-00008-of-00020.safetensors",
192
+ "backbone.layers.37.mixer.A_log": "model-00008-of-00020.safetensors",
193
+ "backbone.layers.37.mixer.D": "model-00008-of-00020.safetensors",
194
+ "backbone.layers.37.mixer.conv1d.bias": "model-00008-of-00020.safetensors",
195
+ "backbone.layers.37.mixer.conv1d.weight": "model-00008-of-00020.safetensors",
196
+ "backbone.layers.37.mixer.dt_bias": "model-00008-of-00020.safetensors",
197
+ "backbone.layers.37.mixer.in_proj.weight": "model-00008-of-00020.safetensors",
198
+ "backbone.layers.37.mixer.norm.weight": "model-00008-of-00020.safetensors",
199
+ "backbone.layers.37.mixer.out_proj.weight": "model-00008-of-00020.safetensors",
200
+ "backbone.layers.37.norm.weight": "model-00008-of-00020.safetensors",
201
+ "backbone.layers.38.mixer.k_proj.weight": "model-00008-of-00020.safetensors",
202
+ "backbone.layers.38.mixer.o_proj.weight": "model-00008-of-00020.safetensors",
203
+ "backbone.layers.38.mixer.q_proj.weight": "model-00008-of-00020.safetensors",
204
+ "backbone.layers.38.mixer.v_proj.weight": "model-00008-of-00020.safetensors",
205
+ "backbone.layers.38.norm.weight": "model-00008-of-00020.safetensors",
206
+ "backbone.layers.39.mixer.down_proj.weight": "model-00009-of-00020.safetensors",
207
+ "backbone.layers.39.mixer.up_proj.weight": "model-00008-of-00020.safetensors",
208
+ "backbone.layers.39.norm.weight": "model-00008-of-00020.safetensors",
209
+ "backbone.layers.4.mixer.A_log": "model-00002-of-00020.safetensors",
210
+ "backbone.layers.4.mixer.D": "model-00002-of-00020.safetensors",
211
+ "backbone.layers.4.mixer.conv1d.bias": "model-00002-of-00020.safetensors",
212
+ "backbone.layers.4.mixer.conv1d.weight": "model-00002-of-00020.safetensors",
213
+ "backbone.layers.4.mixer.dt_bias": "model-00002-of-00020.safetensors",
214
+ "backbone.layers.4.mixer.in_proj.weight": "model-00002-of-00020.safetensors",
215
+ "backbone.layers.4.mixer.norm.weight": "model-00002-of-00020.safetensors",
216
+ "backbone.layers.4.mixer.out_proj.weight": "model-00002-of-00020.safetensors",
217
+ "backbone.layers.4.norm.weight": "model-00002-of-00020.safetensors",
218
+ "backbone.layers.40.mixer.A_log": "model-00009-of-00020.safetensors",
219
+ "backbone.layers.40.mixer.D": "model-00009-of-00020.safetensors",
220
+ "backbone.layers.40.mixer.conv1d.bias": "model-00009-of-00020.safetensors",
221
+ "backbone.layers.40.mixer.conv1d.weight": "model-00009-of-00020.safetensors",
222
+ "backbone.layers.40.mixer.dt_bias": "model-00009-of-00020.safetensors",
223
+ "backbone.layers.40.mixer.in_proj.weight": "model-00009-of-00020.safetensors",
224
+ "backbone.layers.40.mixer.norm.weight": "model-00009-of-00020.safetensors",
225
+ "backbone.layers.40.mixer.out_proj.weight": "model-00009-of-00020.safetensors",
226
+ "backbone.layers.40.norm.weight": "model-00009-of-00020.safetensors",
227
+ "backbone.layers.41.mixer.down_proj.weight": "model-00009-of-00020.safetensors",
228
+ "backbone.layers.41.mixer.up_proj.weight": "model-00009-of-00020.safetensors",
229
+ "backbone.layers.41.norm.weight": "model-00009-of-00020.safetensors",
230
+ "backbone.layers.42.mixer.A_log": "model-00009-of-00020.safetensors",
231
+ "backbone.layers.42.mixer.D": "model-00009-of-00020.safetensors",
232
+ "backbone.layers.42.mixer.conv1d.bias": "model-00009-of-00020.safetensors",
233
+ "backbone.layers.42.mixer.conv1d.weight": "model-00009-of-00020.safetensors",
234
+ "backbone.layers.42.mixer.dt_bias": "model-00009-of-00020.safetensors",
235
+ "backbone.layers.42.mixer.in_proj.weight": "model-00009-of-00020.safetensors",
236
+ "backbone.layers.42.mixer.norm.weight": "model-00009-of-00020.safetensors",
237
+ "backbone.layers.42.mixer.out_proj.weight": "model-00009-of-00020.safetensors",
238
+ "backbone.layers.42.norm.weight": "model-00009-of-00020.safetensors",
239
+ "backbone.layers.43.mixer.down_proj.weight": "model-00009-of-00020.safetensors",
240
+ "backbone.layers.43.mixer.up_proj.weight": "model-00009-of-00020.safetensors",
241
+ "backbone.layers.43.norm.weight": "model-00009-of-00020.safetensors",
242
+ "backbone.layers.44.mixer.A_log": "model-00009-of-00020.safetensors",
243
+ "backbone.layers.44.mixer.D": "model-00009-of-00020.safetensors",
244
+ "backbone.layers.44.mixer.conv1d.bias": "model-00009-of-00020.safetensors",
245
+ "backbone.layers.44.mixer.conv1d.weight": "model-00009-of-00020.safetensors",
246
+ "backbone.layers.44.mixer.dt_bias": "model-00009-of-00020.safetensors",
247
+ "backbone.layers.44.mixer.in_proj.weight": "model-00009-of-00020.safetensors",
248
+ "backbone.layers.44.mixer.norm.weight": "model-00009-of-00020.safetensors",
249
+ "backbone.layers.44.mixer.out_proj.weight": "model-00010-of-00020.safetensors",
250
+ "backbone.layers.44.norm.weight": "model-00009-of-00020.safetensors",
251
+ "backbone.layers.45.mixer.down_proj.weight": "model-00010-of-00020.safetensors",
252
+ "backbone.layers.45.mixer.up_proj.weight": "model-00010-of-00020.safetensors",
253
+ "backbone.layers.45.norm.weight": "model-00010-of-00020.safetensors",
254
+ "backbone.layers.46.mixer.A_log": "model-00010-of-00020.safetensors",
255
+ "backbone.layers.46.mixer.D": "model-00010-of-00020.safetensors",
256
+ "backbone.layers.46.mixer.conv1d.bias": "model-00010-of-00020.safetensors",
257
+ "backbone.layers.46.mixer.conv1d.weight": "model-00010-of-00020.safetensors",
258
+ "backbone.layers.46.mixer.dt_bias": "model-00010-of-00020.safetensors",
259
+ "backbone.layers.46.mixer.in_proj.weight": "model-00010-of-00020.safetensors",
260
+ "backbone.layers.46.mixer.norm.weight": "model-00010-of-00020.safetensors",
261
+ "backbone.layers.46.mixer.out_proj.weight": "model-00010-of-00020.safetensors",
262
+ "backbone.layers.46.norm.weight": "model-00010-of-00020.safetensors",
263
+ "backbone.layers.47.mixer.down_proj.weight": "model-00010-of-00020.safetensors",
264
+ "backbone.layers.47.mixer.up_proj.weight": "model-00010-of-00020.safetensors",
265
+ "backbone.layers.47.norm.weight": "model-00010-of-00020.safetensors",
266
+ "backbone.layers.48.mixer.A_log": "model-00010-of-00020.safetensors",
267
+ "backbone.layers.48.mixer.D": "model-00010-of-00020.safetensors",
268
+ "backbone.layers.48.mixer.conv1d.bias": "model-00010-of-00020.safetensors",
269
+ "backbone.layers.48.mixer.conv1d.weight": "model-00010-of-00020.safetensors",
270
+ "backbone.layers.48.mixer.dt_bias": "model-00010-of-00020.safetensors",
271
+ "backbone.layers.48.mixer.in_proj.weight": "model-00010-of-00020.safetensors",
272
+ "backbone.layers.48.mixer.norm.weight": "model-00010-of-00020.safetensors",
273
+ "backbone.layers.48.mixer.out_proj.weight": "model-00010-of-00020.safetensors",
274
+ "backbone.layers.48.norm.weight": "model-00010-of-00020.safetensors",
275
+ "backbone.layers.49.mixer.k_proj.weight": "model-00010-of-00020.safetensors",
276
+ "backbone.layers.49.mixer.o_proj.weight": "model-00010-of-00020.safetensors",
277
+ "backbone.layers.49.mixer.q_proj.weight": "model-00010-of-00020.safetensors",
278
+ "backbone.layers.49.mixer.v_proj.weight": "model-00010-of-00020.safetensors",
279
+ "backbone.layers.49.norm.weight": "model-00010-of-00020.safetensors",
280
+ "backbone.layers.5.mixer.down_proj.weight": "model-00002-of-00020.safetensors",
281
+ "backbone.layers.5.mixer.up_proj.weight": "model-00002-of-00020.safetensors",
282
+ "backbone.layers.5.norm.weight": "model-00002-of-00020.safetensors",
283
+ "backbone.layers.50.mixer.down_proj.weight": "model-00011-of-00020.safetensors",
284
+ "backbone.layers.50.mixer.up_proj.weight": "model-00010-of-00020.safetensors",
285
+ "backbone.layers.50.norm.weight": "model-00010-of-00020.safetensors",
286
+ "backbone.layers.51.mixer.A_log": "model-00011-of-00020.safetensors",
287
+ "backbone.layers.51.mixer.D": "model-00011-of-00020.safetensors",
288
+ "backbone.layers.51.mixer.conv1d.bias": "model-00011-of-00020.safetensors",
289
+ "backbone.layers.51.mixer.conv1d.weight": "model-00011-of-00020.safetensors",
290
+ "backbone.layers.51.mixer.dt_bias": "model-00011-of-00020.safetensors",
291
+ "backbone.layers.51.mixer.in_proj.weight": "model-00011-of-00020.safetensors",
292
+ "backbone.layers.51.mixer.norm.weight": "model-00011-of-00020.safetensors",
293
+ "backbone.layers.51.mixer.out_proj.weight": "model-00011-of-00020.safetensors",
294
+ "backbone.layers.51.norm.weight": "model-00011-of-00020.safetensors",
295
+ "backbone.layers.52.mixer.down_proj.weight": "model-00011-of-00020.safetensors",
296
+ "backbone.layers.52.mixer.up_proj.weight": "model-00011-of-00020.safetensors",
297
+ "backbone.layers.52.norm.weight": "model-00011-of-00020.safetensors",
298
+ "backbone.layers.53.mixer.A_log": "model-00011-of-00020.safetensors",
299
+ "backbone.layers.53.mixer.D": "model-00011-of-00020.safetensors",
300
+ "backbone.layers.53.mixer.conv1d.bias": "model-00011-of-00020.safetensors",
301
+ "backbone.layers.53.mixer.conv1d.weight": "model-00011-of-00020.safetensors",
302
+ "backbone.layers.53.mixer.dt_bias": "model-00011-of-00020.safetensors",
303
+ "backbone.layers.53.mixer.in_proj.weight": "model-00011-of-00020.safetensors",
304
+ "backbone.layers.53.mixer.norm.weight": "model-00011-of-00020.safetensors",
305
+ "backbone.layers.53.mixer.out_proj.weight": "model-00011-of-00020.safetensors",
306
+ "backbone.layers.53.norm.weight": "model-00011-of-00020.safetensors",
307
+ "backbone.layers.54.mixer.down_proj.weight": "model-00011-of-00020.safetensors",
308
+ "backbone.layers.54.mixer.up_proj.weight": "model-00011-of-00020.safetensors",
309
+ "backbone.layers.54.norm.weight": "model-00011-of-00020.safetensors",
310
+ "backbone.layers.55.mixer.A_log": "model-00011-of-00020.safetensors",
311
+ "backbone.layers.55.mixer.D": "model-00011-of-00020.safetensors",
312
+ "backbone.layers.55.mixer.conv1d.bias": "model-00011-of-00020.safetensors",
313
+ "backbone.layers.55.mixer.conv1d.weight": "model-00011-of-00020.safetensors",
314
+ "backbone.layers.55.mixer.dt_bias": "model-00011-of-00020.safetensors",
315
+ "backbone.layers.55.mixer.in_proj.weight": "model-00011-of-00020.safetensors",
316
+ "backbone.layers.55.mixer.norm.weight": "model-00011-of-00020.safetensors",
317
+ "backbone.layers.55.mixer.out_proj.weight": "model-00012-of-00020.safetensors",
318
+ "backbone.layers.55.norm.weight": "model-00011-of-00020.safetensors",
319
+ "backbone.layers.56.mixer.down_proj.weight": "model-00012-of-00020.safetensors",
320
+ "backbone.layers.56.mixer.up_proj.weight": "model-00012-of-00020.safetensors",
321
+ "backbone.layers.56.norm.weight": "model-00012-of-00020.safetensors",
322
+ "backbone.layers.57.mixer.A_log": "model-00012-of-00020.safetensors",
323
+ "backbone.layers.57.mixer.D": "model-00012-of-00020.safetensors",
324
+ "backbone.layers.57.mixer.conv1d.bias": "model-00012-of-00020.safetensors",
325
+ "backbone.layers.57.mixer.conv1d.weight": "model-00012-of-00020.safetensors",
326
+ "backbone.layers.57.mixer.dt_bias": "model-00012-of-00020.safetensors",
327
+ "backbone.layers.57.mixer.in_proj.weight": "model-00012-of-00020.safetensors",
328
+ "backbone.layers.57.mixer.norm.weight": "model-00012-of-00020.safetensors",
329
+ "backbone.layers.57.mixer.out_proj.weight": "model-00012-of-00020.safetensors",
330
+ "backbone.layers.57.norm.weight": "model-00012-of-00020.safetensors",
331
+ "backbone.layers.58.mixer.down_proj.weight": "model-00012-of-00020.safetensors",
332
+ "backbone.layers.58.mixer.up_proj.weight": "model-00012-of-00020.safetensors",
333
+ "backbone.layers.58.norm.weight": "model-00012-of-00020.safetensors",
334
+ "backbone.layers.59.mixer.A_log": "model-00012-of-00020.safetensors",
335
+ "backbone.layers.59.mixer.D": "model-00012-of-00020.safetensors",
336
+ "backbone.layers.59.mixer.conv1d.bias": "model-00012-of-00020.safetensors",
337
+ "backbone.layers.59.mixer.conv1d.weight": "model-00012-of-00020.safetensors",
338
+ "backbone.layers.59.mixer.dt_bias": "model-00012-of-00020.safetensors",
339
+ "backbone.layers.59.mixer.in_proj.weight": "model-00012-of-00020.safetensors",
340
+ "backbone.layers.59.mixer.norm.weight": "model-00012-of-00020.safetensors",
341
+ "backbone.layers.59.mixer.out_proj.weight": "model-00012-of-00020.safetensors",
342
+ "backbone.layers.59.norm.weight": "model-00012-of-00020.safetensors",
343
+ "backbone.layers.6.mixer.A_log": "model-00002-of-00020.safetensors",
344
+ "backbone.layers.6.mixer.D": "model-00002-of-00020.safetensors",
345
+ "backbone.layers.6.mixer.conv1d.bias": "model-00002-of-00020.safetensors",
346
+ "backbone.layers.6.mixer.conv1d.weight": "model-00002-of-00020.safetensors",
347
+ "backbone.layers.6.mixer.dt_bias": "model-00002-of-00020.safetensors",
348
+ "backbone.layers.6.mixer.in_proj.weight": "model-00002-of-00020.safetensors",
349
+ "backbone.layers.6.mixer.norm.weight": "model-00002-of-00020.safetensors",
350
+ "backbone.layers.6.mixer.out_proj.weight": "model-00002-of-00020.safetensors",
351
+ "backbone.layers.6.norm.weight": "model-00002-of-00020.safetensors",
352
+ "backbone.layers.60.mixer.k_proj.weight": "model-00012-of-00020.safetensors",
353
+ "backbone.layers.60.mixer.o_proj.weight": "model-00012-of-00020.safetensors",
354
+ "backbone.layers.60.mixer.q_proj.weight": "model-00012-of-00020.safetensors",
355
+ "backbone.layers.60.mixer.v_proj.weight": "model-00012-of-00020.safetensors",
356
+ "backbone.layers.60.norm.weight": "model-00012-of-00020.safetensors",
357
+ "backbone.layers.61.mixer.down_proj.weight": "model-00013-of-00020.safetensors",
358
+ "backbone.layers.61.mixer.up_proj.weight": "model-00012-of-00020.safetensors",
359
+ "backbone.layers.61.norm.weight": "model-00012-of-00020.safetensors",
360
+ "backbone.layers.62.mixer.A_log": "model-00013-of-00020.safetensors",
361
+ "backbone.layers.62.mixer.D": "model-00013-of-00020.safetensors",
362
+ "backbone.layers.62.mixer.conv1d.bias": "model-00013-of-00020.safetensors",
363
+ "backbone.layers.62.mixer.conv1d.weight": "model-00013-of-00020.safetensors",
364
+ "backbone.layers.62.mixer.dt_bias": "model-00013-of-00020.safetensors",
365
+ "backbone.layers.62.mixer.in_proj.weight": "model-00013-of-00020.safetensors",
366
+ "backbone.layers.62.mixer.norm.weight": "model-00013-of-00020.safetensors",
367
+ "backbone.layers.62.mixer.out_proj.weight": "model-00013-of-00020.safetensors",
368
+ "backbone.layers.62.norm.weight": "model-00013-of-00020.safetensors",
369
+ "backbone.layers.63.mixer.down_proj.weight": "model-00013-of-00020.safetensors",
370
+ "backbone.layers.63.mixer.up_proj.weight": "model-00013-of-00020.safetensors",
371
+ "backbone.layers.63.norm.weight": "model-00013-of-00020.safetensors",
372
+ "backbone.layers.64.mixer.A_log": "model-00013-of-00020.safetensors",
373
+ "backbone.layers.64.mixer.D": "model-00013-of-00020.safetensors",
374
+ "backbone.layers.64.mixer.conv1d.bias": "model-00013-of-00020.safetensors",
375
+ "backbone.layers.64.mixer.conv1d.weight": "model-00013-of-00020.safetensors",
376
+ "backbone.layers.64.mixer.dt_bias": "model-00013-of-00020.safetensors",
377
+ "backbone.layers.64.mixer.in_proj.weight": "model-00013-of-00020.safetensors",
378
+ "backbone.layers.64.mixer.norm.weight": "model-00013-of-00020.safetensors",
379
+ "backbone.layers.64.mixer.out_proj.weight": "model-00013-of-00020.safetensors",
380
+ "backbone.layers.64.norm.weight": "model-00013-of-00020.safetensors",
381
+ "backbone.layers.65.mixer.down_proj.weight": "model-00013-of-00020.safetensors",
382
+ "backbone.layers.65.mixer.up_proj.weight": "model-00013-of-00020.safetensors",
383
+ "backbone.layers.65.norm.weight": "model-00013-of-00020.safetensors",
384
+ "backbone.layers.66.mixer.A_log": "model-00013-of-00020.safetensors",
385
+ "backbone.layers.66.mixer.D": "model-00013-of-00020.safetensors",
386
+ "backbone.layers.66.mixer.conv1d.bias": "model-00013-of-00020.safetensors",
387
+ "backbone.layers.66.mixer.conv1d.weight": "model-00013-of-00020.safetensors",
388
+ "backbone.layers.66.mixer.dt_bias": "model-00013-of-00020.safetensors",
389
+ "backbone.layers.66.mixer.in_proj.weight": "model-00013-of-00020.safetensors",
390
+ "backbone.layers.66.mixer.norm.weight": "model-00013-of-00020.safetensors",
391
+ "backbone.layers.66.mixer.out_proj.weight": "model-00014-of-00020.safetensors",
392
+ "backbone.layers.66.norm.weight": "model-00013-of-00020.safetensors",
393
+ "backbone.layers.67.mixer.down_proj.weight": "model-00014-of-00020.safetensors",
394
+ "backbone.layers.67.mixer.up_proj.weight": "model-00014-of-00020.safetensors",
395
+ "backbone.layers.67.norm.weight": "model-00014-of-00020.safetensors",
396
+ "backbone.layers.68.mixer.A_log": "model-00014-of-00020.safetensors",
397
+ "backbone.layers.68.mixer.D": "model-00014-of-00020.safetensors",
398
+ "backbone.layers.68.mixer.conv1d.bias": "model-00014-of-00020.safetensors",
399
+ "backbone.layers.68.mixer.conv1d.weight": "model-00014-of-00020.safetensors",
400
+ "backbone.layers.68.mixer.dt_bias": "model-00014-of-00020.safetensors",
401
+ "backbone.layers.68.mixer.in_proj.weight": "model-00014-of-00020.safetensors",
402
+ "backbone.layers.68.mixer.norm.weight": "model-00014-of-00020.safetensors",
403
+ "backbone.layers.68.mixer.out_proj.weight": "model-00014-of-00020.safetensors",
404
+ "backbone.layers.68.norm.weight": "model-00014-of-00020.safetensors",
405
+ "backbone.layers.69.mixer.down_proj.weight": "model-00014-of-00020.safetensors",
406
+ "backbone.layers.69.mixer.up_proj.weight": "model-00014-of-00020.safetensors",
407
+ "backbone.layers.69.norm.weight": "model-00014-of-00020.safetensors",
408
+ "backbone.layers.7.mixer.down_proj.weight": "model-00002-of-00020.safetensors",
409
+ "backbone.layers.7.mixer.up_proj.weight": "model-00002-of-00020.safetensors",
410
+ "backbone.layers.7.norm.weight": "model-00002-of-00020.safetensors",
411
+ "backbone.layers.70.mixer.A_log": "model-00014-of-00020.safetensors",
412
+ "backbone.layers.70.mixer.D": "model-00014-of-00020.safetensors",
413
+ "backbone.layers.70.mixer.conv1d.bias": "model-00014-of-00020.safetensors",
414
+ "backbone.layers.70.mixer.conv1d.weight": "model-00014-of-00020.safetensors",
415
+ "backbone.layers.70.mixer.dt_bias": "model-00014-of-00020.safetensors",
416
+ "backbone.layers.70.mixer.in_proj.weight": "model-00014-of-00020.safetensors",
417
+ "backbone.layers.70.mixer.norm.weight": "model-00014-of-00020.safetensors",
418
+ "backbone.layers.70.mixer.out_proj.weight": "model-00014-of-00020.safetensors",
419
+ "backbone.layers.70.norm.weight": "model-00014-of-00020.safetensors",
420
+ "backbone.layers.71.mixer.down_proj.weight": "model-00015-of-00020.safetensors",
421
+ "backbone.layers.71.mixer.up_proj.weight": "model-00014-of-00020.safetensors",
422
+ "backbone.layers.71.norm.weight": "model-00014-of-00020.safetensors",
423
+ "backbone.layers.72.mixer.A_log": "model-00015-of-00020.safetensors",
424
+ "backbone.layers.72.mixer.D": "model-00015-of-00020.safetensors",
425
+ "backbone.layers.72.mixer.conv1d.bias": "model-00015-of-00020.safetensors",
426
+ "backbone.layers.72.mixer.conv1d.weight": "model-00015-of-00020.safetensors",
427
+ "backbone.layers.72.mixer.dt_bias": "model-00015-of-00020.safetensors",
428
+ "backbone.layers.72.mixer.in_proj.weight": "model-00015-of-00020.safetensors",
429
+ "backbone.layers.72.mixer.norm.weight": "model-00015-of-00020.safetensors",
430
+ "backbone.layers.72.mixer.out_proj.weight": "model-00015-of-00020.safetensors",
431
+ "backbone.layers.72.norm.weight": "model-00015-of-00020.safetensors",
432
+ "backbone.layers.73.mixer.down_proj.weight": "model-00015-of-00020.safetensors",
433
+ "backbone.layers.73.mixer.up_proj.weight": "model-00015-of-00020.safetensors",
434
+ "backbone.layers.73.norm.weight": "model-00015-of-00020.safetensors",
435
+ "backbone.layers.74.mixer.A_log": "model-00015-of-00020.safetensors",
436
+ "backbone.layers.74.mixer.D": "model-00015-of-00020.safetensors",
437
+ "backbone.layers.74.mixer.conv1d.bias": "model-00015-of-00020.safetensors",
438
+ "backbone.layers.74.mixer.conv1d.weight": "model-00015-of-00020.safetensors",
439
+ "backbone.layers.74.mixer.dt_bias": "model-00015-of-00020.safetensors",
440
+ "backbone.layers.74.mixer.in_proj.weight": "model-00015-of-00020.safetensors",
441
+ "backbone.layers.74.mixer.norm.weight": "model-00015-of-00020.safetensors",
442
+ "backbone.layers.74.mixer.out_proj.weight": "model-00015-of-00020.safetensors",
443
+ "backbone.layers.74.norm.weight": "model-00015-of-00020.safetensors",
444
+ "backbone.layers.75.mixer.down_proj.weight": "model-00015-of-00020.safetensors",
445
+ "backbone.layers.75.mixer.up_proj.weight": "model-00015-of-00020.safetensors",
446
+ "backbone.layers.75.norm.weight": "model-00015-of-00020.safetensors",
447
+ "backbone.layers.76.mixer.down_proj.weight": "model-00016-of-00020.safetensors",
448
+ "backbone.layers.76.mixer.up_proj.weight": "model-00015-of-00020.safetensors",
449
+ "backbone.layers.76.norm.weight": "model-00015-of-00020.safetensors",
450
+ "backbone.layers.77.mixer.down_proj.weight": "model-00016-of-00020.safetensors",
451
+ "backbone.layers.77.mixer.up_proj.weight": "model-00016-of-00020.safetensors",
452
+ "backbone.layers.77.norm.weight": "model-00016-of-00020.safetensors",
453
+ "backbone.layers.78.mixer.A_log": "model-00016-of-00020.safetensors",
454
+ "backbone.layers.78.mixer.D": "model-00016-of-00020.safetensors",
455
+ "backbone.layers.78.mixer.conv1d.bias": "model-00016-of-00020.safetensors",
456
+ "backbone.layers.78.mixer.conv1d.weight": "model-00016-of-00020.safetensors",
457
+ "backbone.layers.78.mixer.dt_bias": "model-00016-of-00020.safetensors",
458
+ "backbone.layers.78.mixer.in_proj.weight": "model-00016-of-00020.safetensors",
459
+ "backbone.layers.78.mixer.norm.weight": "model-00016-of-00020.safetensors",
460
+ "backbone.layers.78.mixer.out_proj.weight": "model-00016-of-00020.safetensors",
461
+ "backbone.layers.78.norm.weight": "model-00016-of-00020.safetensors",
462
+ "backbone.layers.79.mixer.A_log": "model-00016-of-00020.safetensors",
463
+ "backbone.layers.79.mixer.D": "model-00016-of-00020.safetensors",
464
+ "backbone.layers.79.mixer.conv1d.bias": "model-00016-of-00020.safetensors",
465
+ "backbone.layers.79.mixer.conv1d.weight": "model-00016-of-00020.safetensors",
466
+ "backbone.layers.79.mixer.dt_bias": "model-00016-of-00020.safetensors",
467
+ "backbone.layers.79.mixer.in_proj.weight": "model-00016-of-00020.safetensors",
468
+ "backbone.layers.79.mixer.norm.weight": "model-00016-of-00020.safetensors",
469
+ "backbone.layers.79.mixer.out_proj.weight": "model-00016-of-00020.safetensors",
470
+ "backbone.layers.79.norm.weight": "model-00016-of-00020.safetensors",
471
+ "backbone.layers.8.mixer.A_log": "model-00002-of-00020.safetensors",
472
+ "backbone.layers.8.mixer.D": "model-00002-of-00020.safetensors",
473
+ "backbone.layers.8.mixer.conv1d.bias": "model-00002-of-00020.safetensors",
474
+ "backbone.layers.8.mixer.conv1d.weight": "model-00002-of-00020.safetensors",
475
+ "backbone.layers.8.mixer.dt_bias": "model-00002-of-00020.safetensors",
476
+ "backbone.layers.8.mixer.in_proj.weight": "model-00003-of-00020.safetensors",
477
+ "backbone.layers.8.mixer.norm.weight": "model-00003-of-00020.safetensors",
478
+ "backbone.layers.8.mixer.out_proj.weight": "model-00003-of-00020.safetensors",
479
+ "backbone.layers.8.norm.weight": "model-00002-of-00020.safetensors",
480
+ "backbone.layers.80.mixer.down_proj.weight": "model-00016-of-00020.safetensors",
481
+ "backbone.layers.80.mixer.up_proj.weight": "model-00016-of-00020.safetensors",
482
+ "backbone.layers.80.norm.weight": "model-00016-of-00020.safetensors",
483
+ "backbone.layers.81.mixer.down_proj.weight": "model-00017-of-00020.safetensors",
484
+ "backbone.layers.81.mixer.up_proj.weight": "model-00016-of-00020.safetensors",
485
+ "backbone.layers.81.norm.weight": "model-00016-of-00020.safetensors",
486
+ "backbone.layers.82.mixer.down_proj.weight": "model-00017-of-00020.safetensors",
487
+ "backbone.layers.82.mixer.up_proj.weight": "model-00017-of-00020.safetensors",
488
+ "backbone.layers.82.norm.weight": "model-00017-of-00020.safetensors",
489
+ "backbone.layers.83.mixer.A_log": "model-00017-of-00020.safetensors",
490
+ "backbone.layers.83.mixer.D": "model-00017-of-00020.safetensors",
491
+ "backbone.layers.83.mixer.conv1d.bias": "model-00017-of-00020.safetensors",
492
+ "backbone.layers.83.mixer.conv1d.weight": "model-00017-of-00020.safetensors",
493
+ "backbone.layers.83.mixer.dt_bias": "model-00017-of-00020.safetensors",
494
+ "backbone.layers.83.mixer.in_proj.weight": "model-00017-of-00020.safetensors",
495
+ "backbone.layers.83.mixer.norm.weight": "model-00017-of-00020.safetensors",
496
+ "backbone.layers.83.mixer.out_proj.weight": "model-00017-of-00020.safetensors",
497
+ "backbone.layers.83.norm.weight": "model-00017-of-00020.safetensors",
498
+ "backbone.layers.84.mixer.down_proj.weight": "model-00017-of-00020.safetensors",
499
+ "backbone.layers.84.mixer.up_proj.weight": "model-00017-of-00020.safetensors",
500
+ "backbone.layers.84.norm.weight": "model-00017-of-00020.safetensors",
501
+ "backbone.layers.85.mixer.A_log": "model-00017-of-00020.safetensors",
502
+ "backbone.layers.85.mixer.D": "model-00017-of-00020.safetensors",
503
+ "backbone.layers.85.mixer.conv1d.bias": "model-00017-of-00020.safetensors",
504
+ "backbone.layers.85.mixer.conv1d.weight": "model-00017-of-00020.safetensors",
505
+ "backbone.layers.85.mixer.dt_bias": "model-00017-of-00020.safetensors",
506
+ "backbone.layers.85.mixer.in_proj.weight": "model-00017-of-00020.safetensors",
507
+ "backbone.layers.85.mixer.norm.weight": "model-00017-of-00020.safetensors",
508
+ "backbone.layers.85.mixer.out_proj.weight": "model-00017-of-00020.safetensors",
509
+ "backbone.layers.85.norm.weight": "model-00017-of-00020.safetensors",
510
+ "backbone.layers.86.mixer.k_proj.weight": "model-00017-of-00020.safetensors",
511
+ "backbone.layers.86.mixer.o_proj.weight": "model-00017-of-00020.safetensors",
512
+ "backbone.layers.86.mixer.q_proj.weight": "model-00017-of-00020.safetensors",
513
+ "backbone.layers.86.mixer.v_proj.weight": "model-00017-of-00020.safetensors",
514
+ "backbone.layers.86.norm.weight": "model-00017-of-00020.safetensors",
515
+ "backbone.layers.87.mixer.down_proj.weight": "model-00018-of-00020.safetensors",
516
+ "backbone.layers.87.mixer.up_proj.weight": "model-00018-of-00020.safetensors",
517
+ "backbone.layers.87.norm.weight": "model-00017-of-00020.safetensors",
518
+ "backbone.layers.88.mixer.A_log": "model-00018-of-00020.safetensors",
519
+ "backbone.layers.88.mixer.D": "model-00018-of-00020.safetensors",
520
+ "backbone.layers.88.mixer.conv1d.bias": "model-00018-of-00020.safetensors",
521
+ "backbone.layers.88.mixer.conv1d.weight": "model-00018-of-00020.safetensors",
522
+ "backbone.layers.88.mixer.dt_bias": "model-00018-of-00020.safetensors",
523
+ "backbone.layers.88.mixer.in_proj.weight": "model-00018-of-00020.safetensors",
524
+ "backbone.layers.88.mixer.norm.weight": "model-00018-of-00020.safetensors",
525
+ "backbone.layers.88.mixer.out_proj.weight": "model-00018-of-00020.safetensors",
526
+ "backbone.layers.88.norm.weight": "model-00018-of-00020.safetensors",
527
+ "backbone.layers.89.mixer.down_proj.weight": "model-00018-of-00020.safetensors",
528
+ "backbone.layers.89.mixer.up_proj.weight": "model-00018-of-00020.safetensors",
529
+ "backbone.layers.89.norm.weight": "model-00018-of-00020.safetensors",
530
+ "backbone.layers.9.mixer.down_proj.weight": "model-00003-of-00020.safetensors",
531
+ "backbone.layers.9.mixer.up_proj.weight": "model-00003-of-00020.safetensors",
532
+ "backbone.layers.9.norm.weight": "model-00003-of-00020.safetensors",
533
+ "backbone.layers.90.mixer.A_log": "model-00018-of-00020.safetensors",
534
+ "backbone.layers.90.mixer.D": "model-00018-of-00020.safetensors",
535
+ "backbone.layers.90.mixer.conv1d.bias": "model-00018-of-00020.safetensors",
536
+ "backbone.layers.90.mixer.conv1d.weight": "model-00018-of-00020.safetensors",
537
+ "backbone.layers.90.mixer.dt_bias": "model-00018-of-00020.safetensors",
538
+ "backbone.layers.90.mixer.in_proj.weight": "model-00018-of-00020.safetensors",
539
+ "backbone.layers.90.mixer.norm.weight": "model-00018-of-00020.safetensors",
540
+ "backbone.layers.90.mixer.out_proj.weight": "model-00018-of-00020.safetensors",
541
+ "backbone.layers.90.norm.weight": "model-00018-of-00020.safetensors",
542
+ "backbone.layers.91.mixer.down_proj.weight": "model-00018-of-00020.safetensors",
543
+ "backbone.layers.91.mixer.up_proj.weight": "model-00018-of-00020.safetensors",
544
+ "backbone.layers.91.norm.weight": "model-00018-of-00020.safetensors",
545
+ "backbone.layers.92.mixer.A_log": "model-00018-of-00020.safetensors",
546
+ "backbone.layers.92.mixer.D": "model-00018-of-00020.safetensors",
547
+ "backbone.layers.92.mixer.conv1d.bias": "model-00018-of-00020.safetensors",
548
+ "backbone.layers.92.mixer.conv1d.weight": "model-00018-of-00020.safetensors",
549
+ "backbone.layers.92.mixer.dt_bias": "model-00018-of-00020.safetensors",
550
+ "backbone.layers.92.mixer.in_proj.weight": "model-00019-of-00020.safetensors",
551
+ "backbone.layers.92.mixer.norm.weight": "model-00019-of-00020.safetensors",
552
+ "backbone.layers.92.mixer.out_proj.weight": "model-00019-of-00020.safetensors",
553
+ "backbone.layers.92.norm.weight": "model-00018-of-00020.safetensors",
554
+ "backbone.layers.93.mixer.down_proj.weight": "model-00019-of-00020.safetensors",
555
+ "backbone.layers.93.mixer.up_proj.weight": "model-00019-of-00020.safetensors",
556
+ "backbone.layers.93.norm.weight": "model-00019-of-00020.safetensors",
557
+ "backbone.layers.94.mixer.A_log": "model-00019-of-00020.safetensors",
558
+ "backbone.layers.94.mixer.D": "model-00019-of-00020.safetensors",
559
+ "backbone.layers.94.mixer.conv1d.bias": "model-00019-of-00020.safetensors",
560
+ "backbone.layers.94.mixer.conv1d.weight": "model-00019-of-00020.safetensors",
561
+ "backbone.layers.94.mixer.dt_bias": "model-00019-of-00020.safetensors",
562
+ "backbone.layers.94.mixer.in_proj.weight": "model-00019-of-00020.safetensors",
563
+ "backbone.layers.94.mixer.norm.weight": "model-00019-of-00020.safetensors",
564
+ "backbone.layers.94.mixer.out_proj.weight": "model-00019-of-00020.safetensors",
565
+ "backbone.layers.94.norm.weight": "model-00019-of-00020.safetensors",
566
+ "backbone.layers.95.mixer.down_proj.weight": "model-00019-of-00020.safetensors",
567
+ "backbone.layers.95.mixer.up_proj.weight": "model-00019-of-00020.safetensors",
568
+ "backbone.layers.95.norm.weight": "model-00019-of-00020.safetensors",
569
+ "backbone.layers.96.mixer.A_log": "model-00019-of-00020.safetensors",
570
+ "backbone.layers.96.mixer.D": "model-00019-of-00020.safetensors",
571
+ "backbone.layers.96.mixer.conv1d.bias": "model-00019-of-00020.safetensors",
572
+ "backbone.layers.96.mixer.conv1d.weight": "model-00019-of-00020.safetensors",
573
+ "backbone.layers.96.mixer.dt_bias": "model-00019-of-00020.safetensors",
574
+ "backbone.layers.96.mixer.in_proj.weight": "model-00019-of-00020.safetensors",
575
+ "backbone.layers.96.mixer.norm.weight": "model-00019-of-00020.safetensors",
576
+ "backbone.layers.96.mixer.out_proj.weight": "model-00019-of-00020.safetensors",
577
+ "backbone.layers.96.norm.weight": "model-00019-of-00020.safetensors",
578
+ "backbone.layers.97.mixer.down_proj.weight": "model-00020-of-00020.safetensors",
579
+ "backbone.layers.97.mixer.up_proj.weight": "model-00020-of-00020.safetensors",
580
+ "backbone.layers.97.norm.weight": "model-00019-of-00020.safetensors",
581
+ "backbone.norm_f.weight": "model-00020-of-00020.safetensors",
582
+ "lm_head.weight": "model-00020-of-00020.safetensors"
583
+ }
584
+ }
modeling_nemotron_h.py ADDED
@@ -0,0 +1,1632 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 HuggingFace Inc. team.
3
+ # Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """PyTorch NemotronH model."""
17
+
18
+ import math
19
+ from dataclasses import dataclass
20
+ from typing import Any, Dict, Optional, Tuple, Union
21
+
22
+ import torch
23
+ import torch.utils.checkpoint
24
+ from torch import nn
25
+ from torch.nn import CrossEntropyLoss
26
+
27
+ from transformers.activations import ACT2FN
28
+ from transformers.cache_utils import DynamicCache # we need __iter__ and __len__ of pkv
29
+ from transformers.generation import GenerationMixin
30
+ from transformers.modeling_attn_mask_utils import (
31
+ AttentionMaskConverter,
32
+ )
33
+ from transformers.modeling_utils import PreTrainedModel
34
+ from transformers.utils import (
35
+ ModelOutput,
36
+ add_code_sample_docstrings,
37
+ add_start_docstrings,
38
+ add_start_docstrings_to_model_forward,
39
+ logging,
40
+ )
41
+ from transformers.utils.import_utils import (
42
+ is_causal_conv1d_available,
43
+ is_flash_attn_2_available,
44
+ is_flash_attn_greater_or_equal_2_10,
45
+ is_mamba_2_ssm_available,
46
+ )
47
+ from .configuration_nemotron_h import NemotronHConfig
48
+
49
+
50
+ logger = logging.get_logger(__name__)
51
+
52
+
53
+ # Copied from transformers.models.mamba.modeling_mamba2.modeling_mamba2.py with MAMBA2->NEMOTRONH,Mamba2->NemotronH
54
+ # For Mamba2 components Mamba2->NemotronHMamba2
55
+ if is_mamba_2_ssm_available():
56
+ from mamba_ssm.ops.triton.selective_state_update import selective_state_update
57
+ from mamba_ssm.ops.triton.ssd_combined import mamba_chunk_scan_combined, mamba_split_conv1d_scan_combined
58
+ else:
59
+ mamba_chunk_scan_combined, mamba_split_conv1d_scan_combined, selective_state_update = None, None, None
60
+
61
+ try:
62
+ #from mamba_ssm.ops.triton.layernorm_gated import RMSNorm as RMSNormGated
63
+ from mamba_ssm.ops.triton.layernorm_gated import rmsnorm_fn
64
+ except ImportError:
65
+ raise ImportError("mamba-ssm is required by the Mamba model but cannot be imported")
66
+
67
+ if is_causal_conv1d_available():
68
+ from causal_conv1d import causal_conv1d_fn, causal_conv1d_update
69
+ else:
70
+ causal_conv1d_update, causal_conv1d_fn = None, None
71
+
72
+ if is_flash_attn_2_available():
73
+ from transformers.modeling_flash_attention_utils import _flash_attention_forward
74
+
75
+ is_fast_path_available = all(
76
+ (
77
+ selective_state_update,
78
+ mamba_chunk_scan_combined,
79
+ mamba_split_conv1d_scan_combined,
80
+ causal_conv1d_fn,
81
+ causal_conv1d_update,
82
+ )
83
+ )
84
+
85
+
86
+ _CHECKPOINT_FOR_DOC = "nvidia/Nemotron-H-56B-Base-8K"
87
+ _CONFIG_FOR_DOC = "NemotronHConfig"
88
+
89
+
90
+ # Helper methods for segment sum computation
91
+
92
+
93
+ def pad_tensor_by_size(input_tensor: torch.Tensor, pad_size: int):
94
+ """
95
+ Padding x tensor with `pad_size` on the seq_len dim (dim=1)
96
+
97
+ Assumes that we only have tensors of either size 4 or 3
98
+ """
99
+ pad_shape = (0, 0, 0, 0, 0, pad_size, 0, 0) if len(input_tensor.shape) == 4 else (0, 0, 0, pad_size, 0, 0)
100
+
101
+ return torch.nn.functional.pad(input_tensor, pad_shape, mode="constant", value=0)
102
+
103
+
104
+ def reshape_into_chunks(input_tensor, pad_size, chunk_size):
105
+ """
106
+ Padding input_tensor with `pad_size` on the seq_len dim (dim=1) and
107
+ simultaneously splitting it into chunk sequences.
108
+
109
+ Assumes that we only have tensors of either size 4 or 3
110
+ """
111
+ # [bsz, seq_len, ...] -> [bsz, seq_len multiple of chunk_size, ...]
112
+ input_tensor = pad_tensor_by_size(input_tensor, pad_size)
113
+
114
+ if len(input_tensor.shape) == 3:
115
+ # [bsz, seq_len multiple of chunk_size, num_heads] -> [bsz, -1, chunk_size, num_heads]
116
+ return input_tensor.reshape(input_tensor.shape[0], -1, chunk_size, input_tensor.shape[2])
117
+ else:
118
+ # [bsz, seq_len multiple of chunk_size, num_heads, head_dim or state_size] -> [bsz, -1, chunk_size, num_heads, head_dim or state_size]
119
+ return input_tensor.reshape(
120
+ input_tensor.shape[0], -1, chunk_size, input_tensor.shape[2], input_tensor.shape[3]
121
+ )
122
+
123
+
124
+ def segment_sum(input_tensor):
125
+ """
126
+ More stable segment sum calculation. Uses cumulative sums and masking instead of direct subtractions.
127
+ """
128
+ chunk_size = input_tensor.size(-1)
129
+ # 1. expand input tensor to have an additional dimension and repeat along that dimension
130
+ # [..., chunk_size] -> [..., chunk_size, chunk_size]
131
+ input_tensor = input_tensor[..., None].expand(*input_tensor.size(), chunk_size)
132
+ # 2. create a lower triangular mask with the diagonal set to 0 to 0 out elements above diag
133
+ mask = torch.tril(torch.ones(chunk_size, chunk_size, device=input_tensor.device, dtype=torch.bool), diagonal=-1)
134
+ input_tensor = input_tensor.masked_fill(~mask, 0)
135
+ # 3. compute actual cumsum
136
+ tensor_segsum = torch.cumsum(input_tensor, dim=-2)
137
+
138
+ # 4. apply mask to keep only the lower triangular part of the cumulative sum result (incl diagonal this time)
139
+ mask = torch.tril(torch.ones(chunk_size, chunk_size, device=input_tensor.device, dtype=torch.bool), diagonal=0)
140
+ tensor_segsum = tensor_segsum.masked_fill(~mask, -torch.inf)
141
+ return tensor_segsum
142
+
143
+
144
+ def apply_mask_to_padding_states(hidden_states, attention_mask):
145
+ """
146
+ Tunes out the hidden states for padding tokens, see https://github.com/state-spaces/mamba/issues/66
147
+ """
148
+ if attention_mask is not None and attention_mask.shape[1] > 1 and attention_mask.shape[0] > 1:
149
+ dtype = hidden_states.dtype
150
+ hidden_states = (hidden_states * attention_mask[:, :, None]).to(dtype)
151
+
152
+ return hidden_states
153
+
154
+ # Copied from https://github.com/huggingface/transformers/blob/main/src/transformers/models/jamba/modeling_jamba.py
155
+ class HybridMambaAttentionDynamicCache(DynamicCache):
156
+ """
157
+ A dynamic cache that can handle both the attention cache (which has a seq_len dimension) and the mamba cache
158
+ (which has a constant shape regardless of seq_len).
159
+
160
+ This cache has two sets of lists of tensors: `key_cache` and `value_cache` for attention cache and `conv_states`
161
+ and `ssm_states` for mamba cache. Each of these lists has `num_layers` tensors. The expected shape for each tensor
162
+ For attention layers, `key_cache` and `value_cache` have a shape of `(batch_size, num_heads, seq_len, head_dim)`,
163
+ while `conv_states` and `ssm_states` have a shape of `(batch_size, 0)` (empty tensors).
164
+ For mamba layers, `key_cache` and `value_cache` have a shape of `(batch_size, 0)` (empty tensors),
165
+ while `conv_states` represents the convolution state and has a shape of `(batch_size, d_inner, d_conv)`,
166
+ and `ssm_states` represents the ssm state and has a shape of `(batch_size, d_inner, d_state)`.
167
+ """
168
+
169
+ def __init__(self, config, batch_size, dtype=torch.float16, device=None):
170
+ super().__init__()
171
+ self.dtype = dtype
172
+ self.hybrid_override_pattern = config.hybrid_override_pattern
173
+ self.has_previous_state = False # only used by mamba
174
+ intermediate_size = config.expand * config.hidden_size
175
+ ssm_state_size = config.ssm_state_size
176
+ conv_kernel_size = config.conv_kernel
177
+ self.conv_states = []
178
+ self.ssm_states = []
179
+ self.transformer_layers = []
180
+ for i in range(config.num_hidden_layers):
181
+ if self.hybrid_override_pattern[i] == "M":
182
+ # Mamba layer
183
+ self.conv_states += [
184
+ torch.zeros(batch_size, intermediate_size, conv_kernel_size, device=device, dtype=dtype)
185
+ ]
186
+ self.ssm_states += [
187
+ torch.zeros(batch_size, intermediate_size, ssm_state_size, device=device, dtype=dtype)
188
+ ]
189
+ else:
190
+ # Attention or MLP layer
191
+ self.conv_states += [torch.tensor([[]] * batch_size, device=device)]
192
+ self.ssm_states += [torch.tensor([[]] * batch_size, device=device)]
193
+ self.transformer_layers.append(i)
194
+
195
+ self.key_cache = [torch.tensor([[]] * batch_size, device=device) for _ in range(config.num_hidden_layers)]
196
+ self.value_cache = [torch.tensor([[]] * batch_size, device=device) for _ in range(config.num_hidden_layers)]
197
+
198
+ def update(
199
+ self,
200
+ key_states: torch.Tensor,
201
+ value_states: torch.Tensor,
202
+ layer_idx: int,
203
+ cache_kwargs: Optional[Dict[str, Any]] = None,
204
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
205
+ # Update the cache
206
+ if self.key_cache[layer_idx].shape[-1] == 0:
207
+ self.key_cache[layer_idx] = key_states
208
+ self.value_cache[layer_idx] = value_states
209
+ else:
210
+ self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=2)
211
+ self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=2)
212
+
213
+ return self.key_cache[layer_idx], self.value_cache[layer_idx]
214
+
215
+ def reorder_cache(self, beam_idx: torch.LongTensor):
216
+ """Reorders the cache for beam search, given the selected beam indices."""
217
+ for layer_idx in range(len(self.key_cache)):
218
+ device = self.key_cache[layer_idx].device
219
+ self.key_cache[layer_idx] = self.key_cache[layer_idx].index_select(0, beam_idx.to(device))
220
+ device = self.value_cache[layer_idx].device
221
+ self.value_cache[layer_idx] = self.value_cache[layer_idx].index_select(0, beam_idx.to(device))
222
+
223
+ device = self.conv_states[layer_idx].device
224
+ self.conv_states[layer_idx] = self.conv_states[layer_idx].index_select(0, beam_idx.to(device))
225
+ device = self.ssm_states[layer_idx].device
226
+ self.ssm_states[layer_idx] = self.ssm_states[layer_idx].index_select(0, beam_idx.to(device))
227
+
228
+ def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
229
+ """Returns the sequence length of the cached states. A layer index can be optionally passed."""
230
+ # take any layer that contains cache and not empty tensor
231
+ layer_idx = self.transformer_layers[0] if layer_idx not in self.transformer_layers else layer_idx
232
+ if len(self.key_cache) <= layer_idx:
233
+ return 0
234
+ return self.key_cache[layer_idx].shape[-2]
235
+
236
+ def to_legacy_cache(self) -> Tuple[Tuple[torch.Tensor], Tuple[torch.Tensor]]:
237
+ raise NotImplementedError("HybridMambaAttentionDynamicCache does not have a legacy cache equivalent.")
238
+
239
+ @classmethod
240
+ def from_legacy_cache(cls, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None) -> "DynamicCache":
241
+ raise NotImplementedError("HybridMambaAttentionDynamicCache does not have a legacy cache equivalent.")
242
+
243
+ # Copied from modeling_mamba2.py
244
+ def update_conv_state(
245
+ self, layer_idx: int, new_conv_state: torch.Tensor, cache_init: bool = False
246
+ ) -> torch.Tensor:
247
+ if cache_init:
248
+ self.conv_states[layer_idx] = new_conv_state.to(self.conv_states.device)
249
+ else:
250
+ self.conv_states[layer_idx] = self.conv_states[layer_idx].roll(shifts=-1, dims=-1)
251
+ self.conv_states[layer_idx][:, :, -1] = new_conv_state[:, 0, :].to(self.conv_states.device)
252
+ return self.conv_states[layer_idx]
253
+
254
+ def update_ssm_state(self, layer_idx: int, new_ssm_state: torch.Tensor):
255
+ self.ssm_states[layer_idx] = new_ssm_state.to(self.ssm_states.device)
256
+ return self.ssm_states[layer_idx]
257
+
258
+ def reset(self):
259
+ self.conv_states.zero_()
260
+ self.ssm_states.zero_()
261
+
262
+ class MambaRMSNormGated(torch.nn.Module):
263
+ def __init__(self, hidden_size, group_size, eps=1e-5):
264
+ super().__init__()
265
+ self.weight = nn.Parameter(torch.ones(hidden_size))
266
+ self.variance_epsilon = eps
267
+ self.group_size = group_size
268
+
269
+ # jan28b version
270
+ def forward(self, hidden_states, gate=None):
271
+ return rmsnorm_fn(x=hidden_states,
272
+ weight=self.weight,
273
+ bias=None, # No bias
274
+ z=gate,
275
+ eps=self.variance_epsilon,
276
+ group_size=self.group_size,
277
+ norm_before_gate=False
278
+ )
279
+
280
+ class NemotronHMamba2Mixer(nn.Module):
281
+ """
282
+ Compute ∆, A, B, C, and D the state space parameters and compute the `contextualized_states`.
283
+ A, D are input independent (see Mamba paper [1] Section 3.5.2 "Interpretation of A" for why A isn't selective)
284
+ ∆, B, C are input-dependent (this is a key difference between Mamba and the linear time invariant S4,
285
+ and is why Mamba is called **selective** state spaces)
286
+ """
287
+
288
+ def __init__(self, config: NemotronHConfig, layer_idx: int):
289
+ super().__init__()
290
+ self.num_heads = config.mamba_num_heads
291
+ self.hidden_size = config.hidden_size
292
+ self.ssm_state_size = config.ssm_state_size
293
+ self.conv_kernel_size = config.conv_kernel
294
+ self.intermediate_size = config.mamba_num_heads * config.mamba_head_dim
295
+ self.layer_idx = layer_idx
296
+ self.use_conv_bias = config.use_conv_bias
297
+ self.activation = config.mamba_hidden_act
298
+ self.act = ACT2FN[config.mamba_hidden_act]
299
+
300
+ self.layer_norm_epsilon = config.layer_norm_epsilon
301
+
302
+ self.n_groups = config.n_groups
303
+ self.head_dim = config.mamba_head_dim
304
+ self.chunk_size = config.chunk_size
305
+
306
+ self.time_step_limit = config.time_step_limit
307
+ self.time_step_min = config.time_step_min
308
+ self.time_step_max = config.time_step_max
309
+
310
+ self.conv_dim = self.intermediate_size + 2 * self.n_groups * self.ssm_state_size
311
+ self.conv1d = nn.Conv1d(
312
+ in_channels=self.conv_dim,
313
+ out_channels=self.conv_dim,
314
+ bias=config.use_conv_bias,
315
+ kernel_size=config.conv_kernel,
316
+ groups=self.conv_dim,
317
+ padding=config.conv_kernel - 1,
318
+ )
319
+
320
+ # projection of the input hidden states
321
+ projection_size = self.intermediate_size + self.conv_dim + self.num_heads
322
+ self.in_proj = nn.Linear(
323
+ self.hidden_size,
324
+ projection_size,
325
+ bias=config.use_bias,
326
+ )
327
+ # selective projection used to make dt, B and C input dependant
328
+
329
+ # time step projection (discretization)
330
+ # instantiate once and copy inv_dt in init_weights of PretrainedModel
331
+ self.dt_bias = nn.Parameter(torch.ones(self.num_heads))
332
+
333
+ # S4D real initialization. These are not discretized!
334
+ # The core is to load them, compute the discrete states, then write the updated state. Keeps the memory bounded
335
+ A = torch.arange(1, self.num_heads + 1)
336
+ self.A_log = nn.Parameter(torch.log(A))
337
+ self.A_log._no_weight_decay = True
338
+ self.norm = MambaRMSNormGated(self.intermediate_size, eps=self.layer_norm_epsilon, group_size=self.intermediate_size)
339
+ self.D = nn.Parameter(torch.ones(self.num_heads))
340
+ self.D._no_weight_decay = True
341
+
342
+ self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.use_bias)
343
+ self.use_bias = config.use_bias
344
+
345
+ if not is_fast_path_available:
346
+ logger.warning_once(
347
+ "The fast path is not available because on of `(selective_state_update, causal_conv1d_fn, causal_conv1d_update)`"
348
+ " is None. Falling back to the naive implementation. To install follow https://github.com/state-spaces/mamba/#installation and"
349
+ " https://github.com/Dao-AILab/causal-conv1d"
350
+ )
351
+
352
+ def cuda_kernels_forward(
353
+ self,
354
+ hidden_states: torch.Tensor,
355
+ cache_params: Optional[HybridMambaAttentionDynamicCache] = None,
356
+ cache_position: Optional[torch.LongTensor] = None,
357
+ attention_mask: Optional[torch.Tensor] = None,
358
+ ):
359
+ # 1. Gated MLP's linear projection
360
+ hidden_states = apply_mask_to_padding_states(hidden_states, attention_mask)
361
+ projected_states = self.in_proj(hidden_states)
362
+
363
+ # Set up dimensions for reshapes later
364
+ batch_size, seq_len, _ = hidden_states.shape
365
+ groups_time_state_size = self.n_groups * self.ssm_state_size
366
+ d_mlp = (
367
+ projected_states.shape[-1]
368
+ - 2 * self.intermediate_size
369
+ - 2 * self.n_groups * self.ssm_state_size
370
+ - self.num_heads
371
+ ) // 2
372
+
373
+ # Single step calculations via cache
374
+ if cache_params is not None and cache_position is not None and cache_position[0] > 0:
375
+ _, _, gate, hidden_states_B_C, dt = projected_states.squeeze(1).split(
376
+ [d_mlp, d_mlp, self.intermediate_size, self.conv_dim, self.num_heads], dim=-1
377
+ )
378
+
379
+ # 2. Convolution sequence transformation
380
+ hidden_states_B_C = causal_conv1d_update(
381
+ hidden_states_B_C,
382
+ cache_params.conv_states[self.layer_idx],
383
+ self.conv1d.weight.squeeze(1),
384
+ self.conv1d.bias,
385
+ self.activation,
386
+ )
387
+
388
+ hidden_states, B, C = torch.split(
389
+ hidden_states_B_C,
390
+ [self.intermediate_size, groups_time_state_size, groups_time_state_size],
391
+ dim=-1,
392
+ )
393
+
394
+ # 3. SSM transformation
395
+ A = -torch.exp(self.A_log.float()) # (nheads,)
396
+ A = A[:, None, ...][:, :, None].expand(-1, self.head_dim, self.ssm_state_size).to(dtype=torch.float32)
397
+ dt = dt[:, :, None].expand(-1, -1, self.head_dim)
398
+ dt_bias = self.dt_bias[:, None, ...].expand(-1, self.head_dim)
399
+ D = self.D[:, None, ...].expand(-1, self.head_dim)
400
+ B = B.view(batch_size, self.n_groups, B.shape[1] // self.n_groups)
401
+ C = C.view(batch_size, self.n_groups, C.shape[1] // self.n_groups)
402
+ hidden_states_reshaped = hidden_states.view(batch_size, self.num_heads, self.head_dim)
403
+ hidden_states = selective_state_update(
404
+ cache_params.ssm_states[self.layer_idx],
405
+ hidden_states_reshaped,
406
+ dt,
407
+ A,
408
+ B,
409
+ C,
410
+ D,
411
+ z=None,
412
+ dt_bias=dt_bias,
413
+ dt_softplus=True,
414
+ )
415
+ hidden_states = hidden_states.view(batch_size, self.num_heads * self.head_dim)
416
+ breakpoint()
417
+ hidden_states = self.norm(hidden_states, gate)
418
+
419
+ # 4. Final linear projection
420
+ out = self.out_proj(hidden_states)[:, None, ...]
421
+
422
+ # Fused calculations or step by step if no initialized cache is found
423
+ else:
424
+ A = -torch.exp(self.A_log.float()) # (num_heads) or (intermediate_size, state_size)
425
+ dt_limit_kwargs = {} if self.time_step_limit == (0.0, float("inf")) else {"dt_limit": self.time_step_limit}
426
+
427
+ # 2-4. Fused kernel for conv1d, SSM, and the final projection
428
+ if self.training and cache_params is None:
429
+ out = mamba_split_conv1d_scan_combined(
430
+ projected_states,
431
+ self.conv1d.weight.squeeze(1),
432
+ self.conv1d.bias,
433
+ self.dt_bias,
434
+ A,
435
+ D=self.D,
436
+ chunk_size=self.chunk_size,
437
+ seq_idx=None, # was seq_idx
438
+ activation=self.activation,
439
+ rmsnorm_weight=self.norm.weight,
440
+ rmsnorm_eps=self.norm.variance_epsilon,
441
+ outproj_weight=self.out_proj.weight,
442
+ outproj_bias=self.out_proj.bias,
443
+ headdim=self.head_dim,
444
+ ngroups=self.n_groups,
445
+ norm_before_gate=False,
446
+ return_final_states=False,
447
+ **dt_limit_kwargs,
448
+ )
449
+
450
+ else:
451
+ _, _, gate, hidden_states_B_C, dt = projected_states.split(
452
+ [d_mlp, d_mlp, self.intermediate_size, self.conv_dim, self.num_heads], dim=-1
453
+ )
454
+
455
+ # 2. Convolution sequence transformation
456
+ # Init cache
457
+ if cache_params is not None:
458
+ hidden_states_B_C_transposed = hidden_states_B_C.transpose(1, 2)
459
+ conv_states = nn.functional.pad(
460
+ hidden_states_B_C_transposed,
461
+ (cache_params.conv_kernel_size - hidden_states_B_C_transposed.shape[-1], 0),
462
+ )
463
+ cache_params.update_conv_state(
464
+ layer_idx=self.layer_idx, new_conv_state=conv_states, cache_init=True
465
+ )
466
+
467
+ if self.activation not in ["silu", "swish"]:
468
+ hidden_states_B_C = self.act(
469
+ self.conv1d(hidden_states_B_C.transpose(1, 2))[..., :seq_len].transpose(1, 2)
470
+ )
471
+ else:
472
+ hidden_states_B_C = causal_conv1d_fn(
473
+ x=hidden_states_B_C.transpose(1, 2),
474
+ weight=self.conv1d.weight.squeeze(1),
475
+ bias=self.conv1d.bias,
476
+ activation=self.activation,
477
+ ).transpose(1, 2)
478
+
479
+ hidden_states_B_C = apply_mask_to_padding_states(hidden_states_B_C, attention_mask)
480
+ hidden_states, B, C = torch.split(
481
+ hidden_states_B_C,
482
+ [self.intermediate_size, groups_time_state_size, groups_time_state_size],
483
+ dim=-1,
484
+ )
485
+
486
+ # 3. SSM transformation
487
+ scan_output, ssm_state = mamba_chunk_scan_combined(
488
+ hidden_states.view(batch_size, seq_len, -1, self.head_dim),
489
+ dt,
490
+ A,
491
+ B.view(batch_size, seq_len, self.n_groups, -1),
492
+ C.view(batch_size, seq_len, self.n_groups, -1),
493
+ chunk_size=self.chunk_size,
494
+ D=self.D,
495
+ z=None,
496
+ seq_idx=None,
497
+ return_final_states=True,
498
+ dt_bias=self.dt_bias,
499
+ dt_softplus=True,
500
+ **dt_limit_kwargs,
501
+ )
502
+
503
+ # Init cache
504
+ if ssm_state is not None and cache_params is not None:
505
+ cache_params.update_ssm_state(layer_idx=self.layer_idx, new_ssm_state=ssm_state)
506
+
507
+ scan_output = scan_output.view(batch_size, seq_len, -1)
508
+
509
+ # Multiply "gate" branch and apply extra normalization layer
510
+ scan_output = self.norm(scan_output, gate)
511
+
512
+ # 4. Final linear projection
513
+ out = self.out_proj(scan_output)
514
+ return out
515
+
516
+ # fmt: off
517
+ def torch_forward(self, input_states, cache_params: Optional[HybridMambaAttentionDynamicCache]=None, cache_position:Optional[torch.LongTensor]=None, attention_mask: Optional[torch.Tensor]=None):
518
+ batch_size, seq_len, _ = input_states.shape
519
+ dtype = input_states.dtype
520
+
521
+ # 1. Gated MLP's linear projection
522
+ input_states = apply_mask_to_padding_states(input_states, attention_mask)
523
+ projected_states = self.in_proj(input_states)
524
+ d_mlp = (projected_states.shape[-1] - 2 * self.intermediate_size - 2 * self.n_groups * self.ssm_state_size-self.num_heads) // 2
525
+ _, _, gate, hidden_states_B_C, dt = projected_states.split(
526
+ [d_mlp, d_mlp, self.intermediate_size, self.conv_dim, self.num_heads], dim=-1
527
+ )
528
+
529
+ # 2. Convolution sequence transformation
530
+ if cache_params is not None and cache_position is not None and cache_position[0] > 0:
531
+ cache_params.update_conv_state(layer_idx=self.layer_idx, new_conv_state=hidden_states_B_C, cache_init=False)
532
+
533
+ # We need to guarantee that anything regarding the cache is on the same device
534
+ conv_states = cache_params.conv_states[self.layer_idx].to(device=self.conv1d.weight.device)
535
+
536
+ hidden_states_B_C = torch.sum(
537
+ conv_states * self.conv1d.weight.squeeze(1), dim=-1
538
+ )
539
+ if self.use_conv_bias:
540
+ hidden_states_B_C = hidden_states_B_C + self.conv1d.bias
541
+ hidden_states_B_C = self.act(hidden_states_B_C)
542
+ else:
543
+ # Init cache
544
+ if cache_params is not None:
545
+ hidden_states_B_C_transposed = hidden_states_B_C.transpose(1, 2)
546
+ conv_states = nn.functional.pad(
547
+ hidden_states_B_C_transposed, (cache_params.conv_kernel_size - hidden_states_B_C_transposed.shape[-1], 0)
548
+ )
549
+ cache_params.update_conv_state(layer_idx=self.layer_idx, new_conv_state=conv_states, cache_init=True)
550
+
551
+ hidden_states_B_C = self.act(self.conv1d(hidden_states_B_C.transpose(1, 2))[..., :seq_len].transpose(1, 2))
552
+
553
+ hidden_states_B_C = apply_mask_to_padding_states(hidden_states_B_C, attention_mask)
554
+ hidden_states, B, C = torch.split(
555
+ hidden_states_B_C,
556
+ [self.intermediate_size, self.n_groups * self.ssm_state_size, self.n_groups * self.ssm_state_size],
557
+ dim=-1
558
+ )
559
+
560
+ # 3. SSM transformation
561
+ A = -torch.exp(self.A_log.float()) # [num_heads]
562
+ if cache_params is not None and cache_position is not None and cache_position[0] > 0:
563
+ # We need to guarantee that anything regarding the cache is on the same device
564
+ cache_device = cache_params.ssm_states.device
565
+
566
+ # Note: there is no need to pad parameter matrices here, as there is just one new token
567
+ # for batched generation
568
+ dt = dt[:, 0, :][:, None, ...]
569
+ dt = dt.transpose(1, 2).expand(batch_size, dt.shape[-1], self.head_dim)
570
+ # [num_heads] -> [num_heads, head_dim]
571
+ dt_bias = self.dt_bias[..., None].expand(self.dt_bias.shape[0], self.head_dim)
572
+
573
+ dt = torch.nn.functional.softplus(dt + dt_bias.to(dt.dtype))
574
+ dt = torch.clamp(dt, self.time_step_limit[0], self.time_step_limit[1])
575
+ A = A[..., None, None].expand(self.num_heads, self.head_dim, self.ssm_state_size).to(dtype=torch.float32)
576
+ # [bsz, num_heads, head_dim, state_size]
577
+ dA = (torch.exp(dt[..., None] * A)).to(device=cache_device)
578
+
579
+ # Discretize B
580
+ # [bsz, n_groups * state_size] -> [bsz, n_groups, 1, state_size] ->
581
+ # -> [bsz, n_groups, group to head repetition factor, state_size] -> [bsz, num_heads, state_size]
582
+ B = B.reshape(batch_size, self.n_groups, -1)[..., None, :]
583
+ B = B.expand(batch_size, self.n_groups, self.num_heads // self.n_groups, B.shape[-1]).contiguous()
584
+ B = B.reshape(batch_size, -1, B.shape[-1])
585
+ # [bsz, num_heads, head_dim, state_size]
586
+ dB = dt[..., None] * B[..., None, :]
587
+
588
+ # Discretize x into dB
589
+ # [bsz, intermediate_size] -> [bsz, num_heads, head_dim]
590
+ hidden_states = hidden_states.reshape(batch_size, -1, self.head_dim)
591
+ dBx = (dB * hidden_states[..., None]).to(device=cache_device)
592
+
593
+ # State calculation
594
+ cache_params.update_ssm_state(
595
+ layer_idx=self.layer_idx,
596
+ new_ssm_state=cache_params.ssm_states[self.layer_idx] * dA + dBx
597
+ )
598
+
599
+ # Subsequent output
600
+ # [bsz, n_groups * state_size] -> [bsz, num_heads, state_size]
601
+ C = C.reshape(batch_size, self.n_groups, -1)[..., None, :]
602
+ C = C.expand(batch_size, self.n_groups, self.num_heads // self.n_groups, C.shape[-1]).contiguous()
603
+ C = C.reshape(batch_size, -1, C.shape[-1])
604
+ # [bsz, num_heads, head_dim]
605
+
606
+ ssm_states = cache_params.ssm_states[self.layer_idx].to(device=C.device, dtype=C.dtype) # Shape: [b, h, d, n]
607
+ # Reshape ssm_states to merge the first two dimensions
608
+ ssm_states_reshaped = ssm_states.view(batch_size * self.num_heads, self.head_dim, self.ssm_state_size) # Shape: [b*h, d, n]
609
+ C_reshaped = C.view(batch_size * self.num_heads, self.ssm_state_size, 1) # Shape: [b*h, n, 1]
610
+ y = torch.bmm(ssm_states_reshaped, C_reshaped)
611
+ y = y.view(batch_size, self.num_heads, self.head_dim)
612
+
613
+ # D skip connection
614
+ # [num_heads] -> [num_heads, head_dim]
615
+ D = self.D[..., None].expand(self.D.shape[0], self.head_dim)
616
+ y = (y + hidden_states * D).to(y.dtype)
617
+
618
+ # [bsz, num_heads, head_dim] -> [bsz, 1, intermediate_size]
619
+ y = y.reshape(batch_size, -1)[:, None, ...]
620
+ else:
621
+ # begin ssd naive implementation without einsums
622
+ dt = nn.functional.softplus(dt + self.dt_bias)
623
+ dt = torch.clamp(dt, self.time_step_limit[0], self.time_step_limit[1])
624
+ hidden_states = hidden_states.reshape(batch_size, seq_len, -1, self.head_dim).float()
625
+ B = B.reshape(batch_size, seq_len, -1, self.ssm_state_size).float()
626
+ C = C.reshape(batch_size, seq_len, -1, self.ssm_state_size).float()
627
+ B = B.repeat(1, 1, self.num_heads // self.n_groups, 1)
628
+ C = C.repeat(1, 1, self.num_heads // self.n_groups, 1)
629
+ pad_size = (self.chunk_size - seq_len % self.chunk_size) % self.chunk_size
630
+
631
+ D_residual = self.D[..., None] * pad_tensor_by_size(hidden_states, pad_size)
632
+
633
+ # Discretize x and A
634
+ hidden_states = hidden_states * dt[..., None]
635
+ A = A.to(hidden_states.dtype) * dt
636
+
637
+ # Rearrange into blocks/chunks
638
+ hidden_states, A, B, C = [reshape_into_chunks(t, pad_size, self.chunk_size) for t in (hidden_states, A, B, C)]
639
+
640
+ # [bsz, -1, chunk_size, num_heads] -> [bsz, num_heads, -1, chunk_size]
641
+ A = A.permute(0, 3, 1, 2)
642
+ A_cumsum = torch.cumsum(A, dim=-1)
643
+
644
+ # 1. Compute the output for each intra-chunk (diagonal blocks)
645
+ # This is the analog of a causal mask
646
+ L = torch.exp(segment_sum(A))
647
+
648
+ # Contraction of C and B to get G (attention-weights like)
649
+ G_intermediate = C[:, :, :, None, :, :] * B[:, :, None, :, :, :] # shape: (b, c, l, s, h, n)
650
+ G = G_intermediate.sum(dim=-1) # shape: (b, c, l, s, h)
651
+
652
+ # Compute M, equivalent to applying attention mask to weights
653
+ M_intermediate = G[..., None] * L.permute(0, 2, 3, 4, 1)[..., None]
654
+ M = M_intermediate.sum(dim=-1)
655
+
656
+ # Compute Y_diag (apply to values)
657
+ Y_diag = (M[..., None] * hidden_states[:, :, None]).sum(dim=3)
658
+
659
+ # 2. Compute the state for each intra-chunk
660
+ # (right term of low-rank factorization of off-diagonal blocks; B terms)
661
+ decay_states = torch.exp((A_cumsum[:, :, :, -1:] - A_cumsum))
662
+ B_decay = B * decay_states.permute(0, -2, -1, 1)[..., None]
663
+ states = (B_decay[..., None, :] * hidden_states[..., None]).sum(dim=2)
664
+
665
+ # 3. Compute the inter-chunk SSM recurrence; produces correct SSM states at chunk boundaries
666
+ # (middle term of factorization of off-diag blocks; A terms)
667
+ if cache_params is not None and cache_position is not None and cache_position[0] > 0:
668
+ previous_states = cache_params.ssm_states[self.layer_idx][:, None, ...].to(device=states.device)
669
+ else:
670
+ previous_states = torch.zeros_like(states[:, :1])
671
+ states = torch.cat([previous_states, states], dim=1)
672
+ decay_chunk = torch.exp(segment_sum(nn.functional.pad(A_cumsum[:, :, :, -1], (1, 0))))
673
+ decay_chunk = decay_chunk.transpose(1, 3)
674
+ new_states = (decay_chunk[..., None, None] * states[:, :, None, ...]).sum(dim=1)
675
+ states, ssm_state = new_states[:, :-1], new_states[:, -1]
676
+
677
+ # 4. Compute state -> output conversion per chunk
678
+ # (left term of low-rank factorization of off-diagonal blocks; C terms)
679
+ state_decay_out = torch.exp(A_cumsum)
680
+ C_times_states = (C[..., None, :] * states[:, :, None, ...])
681
+ state_decay_out_permuted = state_decay_out.permute(0, 2, 3, 1)
682
+ Y_off = (C_times_states.sum(-1) * state_decay_out_permuted[..., None])
683
+
684
+ # Add output of intra-chunk and inter-chunk terms (diagonal and off-diagonal blocks)
685
+ y = Y_diag + Y_off
686
+ # [bsz, -1, self.chunk_size, num_heads, head_dim] -> [bsz, (padded) seq_len, num_heads, head_dim]
687
+ y = y.reshape(batch_size, -1, self.num_heads, self.head_dim)
688
+
689
+ y = y + D_residual
690
+ # Cutting off padded chunks
691
+ if pad_size > 0:
692
+ y = y[:, :seq_len, :, :]
693
+ y = y.reshape(batch_size, seq_len, -1)
694
+
695
+ # Init cache
696
+ if ssm_state is not None and cache_params is not None:
697
+ cache_params.update_ssm_state(layer_idx=self.layer_idx, new_ssm_state=ssm_state)
698
+
699
+ scan_output = self.norm(y, gate)
700
+
701
+ # end ssd naive
702
+
703
+ # 4. Final linear projection
704
+ contextualized_states = self.out_proj(scan_output.to(dtype)) # [batch, seq_len, hidden_size]
705
+ return contextualized_states
706
+ # fmt: on
707
+
708
+ def forward(
709
+ self,
710
+ hidden_states,
711
+ cache_params: Optional[HybridMambaAttentionDynamicCache] = None,
712
+ cache_position: Optional[torch.LongTensor] = None,
713
+ attention_mask: Optional[torch.Tensor] = None,
714
+ ):
715
+ if is_fast_path_available and "cuda" in self.in_proj.weight.device.type:
716
+ return self.cuda_kernels_forward(hidden_states, cache_params, cache_position, attention_mask)
717
+ dtype = hidden_states.dtype
718
+ if attention_mask is not None and attention_mask.shape[1] > 1 and attention_mask.shape[0] > 1:
719
+ # tune out hidden states for pad tokens, see https://github.com/state-spaces/mamba/issues/66
720
+ hidden_states = (hidden_states * attention_mask[:, :, None]).to(dtype)
721
+
722
+ return self.torch_forward(hidden_states, cache_params, cache_position, attention_mask)
723
+
724
+
725
+ class NemotronHRMSNorm(nn.Module):
726
+ def __init__(self, hidden_size, eps=1e-6):
727
+ """
728
+ NemotronHRMSNorm is equivalent to T5LayerNorm and LlamaRMSNorm
729
+ """
730
+ super().__init__()
731
+ self.weight = nn.Parameter(torch.ones(hidden_size))
732
+ self.variance_epsilon = eps
733
+
734
+ def forward(self, hidden_states):
735
+ input_dtype = hidden_states.dtype
736
+ hidden_states = hidden_states.to(torch.float32)
737
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
738
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
739
+ # Weights are in float32
740
+ return (self.weight.to(torch.float32) * hidden_states).to(input_dtype)
741
+
742
+ class NemotronHBlock(nn.Module):
743
+ def __init__(self, config, layer_idx):
744
+ super().__init__()
745
+ self.config = config
746
+ self.layer_idx = layer_idx
747
+ self.residual_in_fp32 = config.residual_in_fp32
748
+ self.norm = NemotronHRMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
749
+
750
+ # M: Mamba2, *: Attention, -: MLP
751
+ self.block_type = config.layers_block_type[layer_idx]
752
+ if self.block_type == "mamba":
753
+ self.mixer = NemotronHMamba2Mixer(config, layer_idx=layer_idx)
754
+ elif self.block_type == "attention":
755
+ self.mixer = NEMOTRONH_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx=layer_idx)
756
+ elif self.block_type == "mlp":
757
+ self.mixer = NemotronHMLP(config, layer_idx=layer_idx)
758
+ else:
759
+ raise ValueError(f"Invalid layer pattern {config.hybrid_override_pattern[layer_idx]}")
760
+
761
+ def forward(
762
+ self,
763
+ hidden_states,
764
+ cache_params: Optional[HybridMambaAttentionDynamicCache] = None,
765
+ cache_position: Optional[torch.LongTensor] = None,
766
+ attention_mask: Optional[torch.Tensor] = None,
767
+ ):
768
+ residual = hidden_states
769
+ hidden_states = self.norm(hidden_states.to(dtype=self.norm.weight.dtype))
770
+ if self.residual_in_fp32:
771
+ residual = residual.to(torch.float32)
772
+
773
+ if self.block_type == "mamba":
774
+ hidden_states = self.mixer(
775
+ hidden_states, cache_params=cache_params, cache_position=cache_position #, attention_mask=attention_mask
776
+ )
777
+ elif self.block_type == "attention":
778
+ hidden_states = self.mixer(
779
+ hidden_states, cache_position=cache_position #, attention_mask=attention_mask
780
+ )
781
+ # hidden_states = (attn_output, attn_weights, past_key_value)
782
+ hidden_states = hidden_states[0]
783
+ elif self.block_type == "mlp":
784
+ hidden_states = self.mixer(
785
+ hidden_states
786
+ )
787
+ else:
788
+ raise ValueError(f"Invalid block_type: {self.block_type}")
789
+
790
+ hidden_states = residual + hidden_states
791
+ return hidden_states
792
+
793
+
794
+ # Copied from transformers.models.nemotron.modeling_nemotron Nemotron->NemotronH
795
+ class NemotronHMLP(nn.Module):
796
+ def __init__(self, config, layer_idx: Optional[int] = None):
797
+ super().__init__()
798
+ self.config = config
799
+ self.layer_idx = layer_idx
800
+ if layer_idx is None:
801
+ logger.warning_once(
802
+ f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
803
+ "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
804
+ "when creating this class."
805
+ )
806
+ self.hidden_size = config.hidden_size
807
+ self.intermediate_size = config.intermediate_size
808
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
809
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias)
810
+ self.act_fn = ACT2FN[config.mlp_hidden_act]
811
+
812
+ def forward(self, x):
813
+ return self.down_proj(self.act_fn(self.up_proj(x)))
814
+
815
+
816
+ # Copied from transformers.models.llama.modeling_llama.repeat_kv
817
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
818
+ """
819
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
820
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
821
+ """
822
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
823
+ if n_rep == 1:
824
+ return hidden_states
825
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
826
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
827
+
828
+
829
+ class NemotronHAttention(nn.Module):
830
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
831
+
832
+ def __init__(self, config: NemotronHConfig, layer_idx: Optional[int] = None):
833
+ super().__init__()
834
+ self.config = config
835
+ self.layer_idx = layer_idx
836
+ if layer_idx is None:
837
+ logger.warning_once(
838
+ f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
839
+ "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
840
+ "when creating this class."
841
+ )
842
+
843
+ self.attention_dropout = config.attention_dropout
844
+ self.hidden_size = config.hidden_size
845
+ self.num_heads = config.num_attention_heads
846
+ if config.attention_head_dim is not None:
847
+ self.head_dim = config.attention_head_dim
848
+ else:
849
+ self.head_dim = config.hidden_size // config.num_attention_heads
850
+ self.num_key_value_heads = config.num_key_value_heads
851
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
852
+ self.max_position_embeddings = config.max_position_embeddings
853
+ self.is_causal = True
854
+
855
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
856
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
857
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
858
+ self.o_proj = nn.Linear(self.head_dim * self.num_heads, self.hidden_size, bias=config.attention_bias)
859
+
860
+ def forward(
861
+ self,
862
+ hidden_states: torch.Tensor,
863
+ # position_embeddings: Tuple[torch.Tensor, torch.Tensor], #TODO
864
+ attention_mask: Optional[torch.Tensor] = None,
865
+ position_ids: Optional[torch.LongTensor] = None,
866
+ past_key_value: Optional[HybridMambaAttentionDynamicCache] = None,
867
+ output_attentions: bool = False,
868
+ use_cache: bool = False,
869
+ cache_position: Optional[torch.LongTensor] = None,
870
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
871
+ bsz, q_len, _ = hidden_states.size()
872
+
873
+ query_states = self.q_proj(hidden_states)
874
+ key_states = self.k_proj(hidden_states)
875
+ value_states = self.v_proj(hidden_states)
876
+
877
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
878
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
879
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
880
+
881
+ if past_key_value is not None:
882
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx)
883
+
884
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
885
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
886
+
887
+ causal_mask = attention_mask
888
+ if attention_mask is not None: # no matter the length, we just slice it
889
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
890
+
891
+ if query_states.device.type == "cuda" and attention_mask is not None:
892
+ query_states = query_states.contiguous()
893
+ key_states = key_states.contiguous()
894
+ value_states = value_states.contiguous()
895
+
896
+ is_causal = True if causal_mask is None and q_len > 1 else False
897
+
898
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
899
+ query_states,
900
+ key_states,
901
+ value_states,
902
+ attn_mask=causal_mask,
903
+ dropout_p=self.attention_dropout if self.training else 0.0,
904
+ is_causal=is_causal,
905
+ )
906
+ attn_output = attn_output.transpose(1, 2).contiguous()
907
+ #attn_output = attn_output.view(bsz, q_len, self.hidden_size)
908
+ attn_output = attn_output.view(bsz, q_len, self.num_heads * self.head_dim)
909
+
910
+ attn_output = self.o_proj(attn_output)
911
+
912
+ return attn_output, None, past_key_value
913
+
914
+
915
+ # Adapted from transformers.models.mistral.modeling_mistral.MistralFlashAttention2 with Mistral->Jamba
916
+ #class JambaFlashAttention2(JambaAttention):
917
+ class NemotronHFlashAttention2(NemotronHAttention):
918
+ """
919
+ Jamba flash attention module. This module inherits from `JambaAttention` as the weights of the module stays
920
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
921
+ flash attention and deal with padding tokens in case the input contains any of them.
922
+ """
923
+ def __init__(self, *args, **kwargs):
924
+ super().__init__(*args, **kwargs)
925
+
926
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
927
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
928
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
929
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
930
+
931
+ def forward(
932
+ self,
933
+ hidden_states: torch.Tensor,
934
+ attention_mask: Optional[torch.Tensor] = None,
935
+ position_ids: Optional[torch.LongTensor] = None,
936
+ past_key_value: Optional[HybridMambaAttentionDynamicCache] = None,
937
+ output_attentions: bool = False,
938
+ use_cache: bool = False,
939
+ cache_position: Optional[torch.LongTensor] = None,
940
+ **kwargs,
941
+ ):
942
+ bsz, q_len, _ = hidden_states.size()
943
+
944
+ query_states = self.q_proj(hidden_states)
945
+ key_states = self.k_proj(hidden_states)
946
+ value_states = self.v_proj(hidden_states)
947
+
948
+ # Flash attention requires the input to have the shape
949
+ # batch_size x seq_length x head_dim x hidden_dim
950
+ # therefore we just need to keep the original shape
951
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim)
952
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
953
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
954
+
955
+ if past_key_value is not None:
956
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx)
957
+
958
+ # repeat k/v heads if n_kv_heads < n_heads
959
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
960
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
961
+ dropout_rate = 0.0 if not self.training else self.attention_dropout
962
+
963
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
964
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
965
+ # cast them back in float16 just to be sure everything works as expected.
966
+ input_dtype = query_states.dtype
967
+ if input_dtype == torch.float32:
968
+ if torch.is_autocast_enabled():
969
+ target_dtype = torch.get_autocast_gpu_dtype()
970
+ # Handle the case where the model is quantized
971
+ elif hasattr(self.config, "_pre_quantization_dtype"):
972
+ target_dtype = self.config._pre_quantization_dtype
973
+ else:
974
+ target_dtype = self.q_proj.weight.dtype
975
+
976
+ logger.warning_once(
977
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
978
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
979
+ f" {target_dtype}."
980
+ )
981
+
982
+ query_states = query_states.to(target_dtype)
983
+ key_states = key_states.to(target_dtype)
984
+ value_states = value_states.to(target_dtype)
985
+
986
+ # Reashape to the expected shape for Flash Attention
987
+ key_states = key_states.transpose(1, 2)
988
+ value_states = value_states.transpose(1, 2)
989
+
990
+ attn_output = _flash_attention_forward(
991
+ query_states,
992
+ key_states,
993
+ value_states,
994
+ attention_mask,
995
+ q_len,
996
+ dropout=dropout_rate,
997
+ sliding_window=getattr(self.config, "sliding_window", None),
998
+ is_causal=self.is_causal,
999
+ use_top_left_mask=self._flash_attn_uses_top_left_mask,
1000
+ )
1001
+
1002
+ #attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
1003
+ attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.head_dim).contiguous()
1004
+ attn_output = self.o_proj(attn_output)
1005
+
1006
+ if not output_attentions:
1007
+ attn_weights = None
1008
+
1009
+ return attn_output, attn_weights, past_key_value
1010
+
1011
+
1012
+ # Adapted from transformers.models.mistral.modeling_mistral.MistralSdpaAttention with Mistral->Jamba
1013
+ #class JambaSdpaAttention(JambaAttention):
1014
+ class NemotronHSdpaAttention(NemotronHAttention):
1015
+ """
1016
+ Jamba attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
1017
+ `JambaAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
1018
+ SDPA API.
1019
+ """
1020
+
1021
+ # Adapted from NemotronHAttention.forward
1022
+ def forward(
1023
+ self,
1024
+ hidden_states: torch.Tensor,
1025
+ attention_mask: Optional[torch.Tensor] = None,
1026
+ position_ids: Optional[torch.LongTensor] = None,
1027
+ past_key_value: Optional[HybridMambaAttentionDynamicCache] = None,
1028
+ output_attentions: bool = False,
1029
+ use_cache: bool = False,
1030
+ cache_position: Optional[torch.LongTensor] = None,
1031
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
1032
+ if output_attentions:
1033
+ # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
1034
+ logger.warning_once(
1035
+ "NemotronHModel is using NemotronHSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
1036
+ 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
1037
+ )
1038
+ return super().forward(
1039
+ hidden_states=hidden_states,
1040
+ attention_mask=attention_mask,
1041
+ position_ids=position_ids,
1042
+ past_key_value=past_key_value,
1043
+ output_attentions=output_attentions,
1044
+ use_cache=use_cache,
1045
+ )
1046
+
1047
+ bsz, q_len, _ = hidden_states.size()
1048
+
1049
+ query_states = self.q_proj(hidden_states)
1050
+ key_states = self.k_proj(hidden_states)
1051
+ value_states = self.v_proj(hidden_states)
1052
+
1053
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
1054
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
1055
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
1056
+
1057
+ if past_key_value is not None:
1058
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx)
1059
+
1060
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
1061
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
1062
+
1063
+ causal_mask = attention_mask
1064
+ if attention_mask is not None:
1065
+ causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
1066
+
1067
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
1068
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
1069
+ if query_states.device.type == "cuda" and attention_mask is not None:
1070
+ query_states = query_states.contiguous()
1071
+ key_states = key_states.contiguous()
1072
+ value_states = value_states.contiguous()
1073
+
1074
+ # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
1075
+ # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
1076
+ # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
1077
+ is_causal = True if self.is_causal and causal_mask is None and q_len > 1 else False
1078
+
1079
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
1080
+ query_states,
1081
+ key_states,
1082
+ value_states,
1083
+ attn_mask=causal_mask,
1084
+ dropout_p=self.attention_dropout if self.training else 0.0,
1085
+ is_causal=is_causal,
1086
+ )
1087
+
1088
+ attn_output = attn_output.transpose(1, 2).contiguous()
1089
+ attn_output = attn_output.view(bsz, q_len, self.hidden_size)
1090
+
1091
+ attn_output = self.o_proj(attn_output)
1092
+
1093
+ return attn_output, None, past_key_value
1094
+
1095
+
1096
+ NEMOTRONH_ATTENTION_CLASSES = {
1097
+ "eager": NemotronHAttention,
1098
+ "flash_attention_2": NemotronHFlashAttention2,
1099
+ "sdpa": NemotronHSdpaAttention,
1100
+ }
1101
+
1102
+ # Copied from transformers.models.mamba.modeling_mamba2.Mamba2PreTrainedModel
1103
+ class NemotronHPreTrainedModel(PreTrainedModel):
1104
+ """
1105
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
1106
+ models.
1107
+ """
1108
+
1109
+ config_class = NemotronHConfig
1110
+ base_model_prefix = "backbone"
1111
+ _no_split_modules = ["NemotronHBlock"]
1112
+ supports_gradient_checkpointing = True
1113
+ _is_stateful = True
1114
+
1115
+ def _init_weights(self, module):
1116
+ """Initialize the weights."""
1117
+ if isinstance(module, NemotronHMamba2Mixer):
1118
+ module.A_log._no_weight_decay = True
1119
+ module.D._no_weight_decay = True
1120
+
1121
+ dt = torch.exp(
1122
+ torch.rand(self.config.mamba_num_heads)
1123
+ * (math.log(self.config.time_step_max) - math.log(self.config.time_step_min))
1124
+ + math.log(self.config.time_step_min)
1125
+ ).clamp(min=self.config.time_step_floor)
1126
+
1127
+ # # Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759
1128
+ inv_dt = dt + torch.log(-torch.expm1(-dt))
1129
+ with torch.no_grad():
1130
+ module.dt_bias.copy_(inv_dt)
1131
+ module.dt_bias._no_reinit = True
1132
+
1133
+ if isinstance(module, nn.Linear):
1134
+ if module.bias is not None:
1135
+ if not getattr(module.bias, "_no_reinit", False):
1136
+ nn.init.zeros_(module.bias)
1137
+ elif isinstance(module, nn.Embedding):
1138
+ nn.init.normal_(module.weight, std=self.config.initializer_range)
1139
+
1140
+ # TODO: Check
1141
+ if self.config.rescale_prenorm_residual:
1142
+ # Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
1143
+ # > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
1144
+ # > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
1145
+ # > -- GPT-2 :: https://openai.com/blog/better-language-models/
1146
+ #
1147
+ # Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
1148
+ for name, p in module.named_parameters():
1149
+ if name in ["out_proj.weight"]:
1150
+ # Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
1151
+ # Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
1152
+ # We need to reinit p since this code could be called multiple times
1153
+ # Having just p *= scale would repeatedly scale it down
1154
+ nn.init.kaiming_uniform_(p, a=math.sqrt(5))
1155
+ with torch.no_grad():
1156
+ p /= math.sqrt(self.config.num_hidden_layers)
1157
+
1158
+
1159
+ @dataclass
1160
+ # Copied from transformers.models.mamba.modeling_mamba2.Mamba2Output with MAMBA2->NemotronH,Mamba2->NemotronH
1161
+ class NemotronHOutput(ModelOutput):
1162
+ """
1163
+ Class for the NemotronH model outputs.
1164
+
1165
+ Args:
1166
+ last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
1167
+ Sequence of hidden-states at the output of the last layer of the model.
1168
+ cache_params (`HybridMambaAttentionDynamicCache`):
1169
+ The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to
1170
+ avoid providing the old `input_ids`.
1171
+
1172
+ Includes both the State space model state matrices after the selective scan, and the Convolutional states
1173
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
1174
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
1175
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
1176
+
1177
+ Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
1178
+ """
1179
+
1180
+ last_hidden_state: Optional[torch.FloatTensor] = None
1181
+ cache_params: Optional[HybridMambaAttentionDynamicCache] = None
1182
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
1183
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
1184
+
1185
+
1186
+ @dataclass
1187
+ # Copied from transformers.models.mamba2.modeling_mamba2.MambaCausalLMOutput with Mamba2->NemotronH
1188
+ class NemotronHCausalLMOutput(ModelOutput):
1189
+ """
1190
+ Base class for causal language model (or autoregressive) outputs.
1191
+
1192
+ Args:
1193
+ loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
1194
+ Language modeling loss (for next-token prediction).
1195
+ logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
1196
+ Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
1197
+ cache_params (`HybridMambaAttentionDynamicCache`):
1198
+ The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to
1199
+ avoid providing the old `input_ids`.
1200
+
1201
+ Includes both the State space model state matrices after the selective scan, and the Convolutional states
1202
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
1203
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
1204
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
1205
+
1206
+ Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
1207
+ """
1208
+
1209
+ loss: Optional[torch.FloatTensor] = None
1210
+ logits: Optional[torch.FloatTensor] = None
1211
+ cache_params: Optional[HybridMambaAttentionDynamicCache] = None
1212
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
1213
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
1214
+
1215
+
1216
+ NEMOTRONH_START_DOCSTRING = r"""
1217
+
1218
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
1219
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
1220
+ etc.)
1221
+
1222
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
1223
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
1224
+ and behavior.
1225
+
1226
+ Parameters:
1227
+ config ([`NemotronHConfig`]): Model configuration class with all the parameters of the model.
1228
+ Initializing with a config file does not load the weights associated with the model, only the
1229
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
1230
+ """
1231
+
1232
+ NEMOTRONH_INPUTS_DOCSTRING = r"""
1233
+ Args:
1234
+ input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`, *optional*):
1235
+ Indices of input sequence tokens in the vocabulary.
1236
+
1237
+ If `cache_params.seqlen_offset>0`, only `input_ids` that do not have their past calculated should be passed as
1238
+ `input_ids`.
1239
+
1240
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1241
+ [`PreTrainedTokenizer.__call__`] for details.
1242
+
1243
+ [What are input IDs?](../glossary#input-ids)
1244
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
1245
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
1246
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
1247
+ model's internal embedding lookup matrix.
1248
+ position_ids (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1249
+ Indices of positions of each input sequence tokens in the position embeddings.
1250
+ cache_params (`HybridMambaAttentionDynamicCache`, *optional*):
1251
+ If passed along, the model uses the previous state in all the blocks (which will give the output for the
1252
+ `input_ids` provided as if the model add `state_input_ids + input_ids` as context).
1253
+ use_cache (`bool`, *optional*):
1254
+ If set to `True`, the `cache_params` is returned and can be used to quickly generate the next logits.
1255
+ output_attentions (`bool`, *optional*):
1256
+ Whether or not to return the attentions tensors of all attention layers.
1257
+ output_hidden_states (`bool`, *optional*):
1258
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
1259
+ more detail.
1260
+ return_dict (`bool`, *optional*):
1261
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
1262
+ cache_position (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1263
+ The position of the current input in the cache. This is used to ensure that the cache is correctly updated.
1264
+ If `cache_params` is passed, `cache_position` should also be passed.
1265
+ attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
1266
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
1267
+
1268
+ - 1 for tokens that are **not masked**,
1269
+ - 0 for tokens that are **masked**.
1270
+
1271
+ [What are attention masks?](../glossary#attention-mask)
1272
+ """
1273
+
1274
+
1275
+ @add_start_docstrings(
1276
+ "The bare NemotronH Model transformer outputting raw hidden-states without any specific head on top.",
1277
+ NEMOTRONH_START_DOCSTRING,
1278
+ )
1279
+ class NemotronHModel(NemotronHPreTrainedModel):
1280
+ def __init__(self, config):
1281
+ super().__init__(config)
1282
+
1283
+ self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
1284
+ self.layers = nn.ModuleList([NemotronHBlock(config, layer_idx=idx) for idx in range(config.num_hidden_layers)])
1285
+
1286
+ self.gradient_checkpointing = False
1287
+ self.norm_f = NemotronHRMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
1288
+ # Initialize weights and apply final processing
1289
+ self._register_load_state_dict_pre_hook(self.load_hook)
1290
+ self.post_init()
1291
+
1292
+ def load_hook(self, state_dict, prefix, *args):
1293
+ for k in state_dict:
1294
+ if "embedding." in k:
1295
+ state_dict[k.replace("embedding.", "embeddings.")] = state_dict.pop(k)
1296
+ break
1297
+
1298
+ def get_input_embeddings(self):
1299
+ return self.embeddings
1300
+
1301
+ def set_input_embeddings(self, new_embeddings):
1302
+ self.embeddings = new_embeddings
1303
+
1304
+ @add_start_docstrings_to_model_forward(NEMOTRONH_INPUTS_DOCSTRING)
1305
+ @add_code_sample_docstrings(
1306
+ checkpoint=_CHECKPOINT_FOR_DOC,
1307
+ output_type=NemotronHOutput,
1308
+ config_class=_CONFIG_FOR_DOC,
1309
+ )
1310
+ def forward(
1311
+ self,
1312
+ input_ids: Optional[torch.LongTensor] = None,
1313
+ inputs_embeds: Optional[torch.LongTensor] = None,
1314
+ position_ids: Optional[torch.LongTensor] = None,
1315
+ cache_params: Optional[HybridMambaAttentionDynamicCache] = None,
1316
+ use_cache: Optional[bool] = None,
1317
+ output_attentions: Optional[bool] = None,
1318
+ output_hidden_states: Optional[bool] = None,
1319
+ return_dict: Optional[bool] = None,
1320
+ cache_position: Optional[torch.LongTensor] = None,
1321
+ attention_mask: Optional[torch.Tensor] = None,
1322
+ **kwargs,
1323
+ ) -> Union[Tuple, NemotronHOutput]:
1324
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1325
+ output_hidden_states = (
1326
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1327
+ )
1328
+ # use_cache = use_cache if use_cache is not None else self.config.use_cache
1329
+ use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
1330
+
1331
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1332
+
1333
+ if (input_ids is None) ^ (inputs_embeds is not None): # ^ is python for xor
1334
+ raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
1335
+
1336
+ if inputs_embeds is None:
1337
+ inputs_embeds = self.embeddings(input_ids)
1338
+
1339
+ if self.gradient_checkpointing and self.training and use_cache:
1340
+ logger.warning_once(
1341
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
1342
+ )
1343
+ use_cache = False
1344
+
1345
+ # From zamba_modeling.py
1346
+ if use_cache and cache_params is None:
1347
+ logger.warning_once(
1348
+ "NemotronH requires an initialized `NemotronHHybridDynamicCache` to return a cache. None was "
1349
+ "provided, so no cache will be returned."
1350
+ )
1351
+
1352
+ hidden_states = inputs_embeds
1353
+
1354
+ if cache_position is None:
1355
+ cache_position = torch.arange(hidden_states.shape[1], device=hidden_states.device)
1356
+ if position_ids is None:
1357
+ position_ids = cache_position.unsqueeze(0)
1358
+
1359
+ causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position)
1360
+ mamba_mask = self._update_mamba_mask(attention_mask, cache_position)
1361
+
1362
+ all_hidden_states = () if output_hidden_states else None
1363
+ all_self_attns = () if output_attentions else None
1364
+ # Until HERE
1365
+
1366
+ for layer_idx, mixer_block in enumerate(self.layers):
1367
+ # Depending on the layer type we opt for 2D base attention mask (Mamba) or 4D causal mask (Attention)
1368
+ if mixer_block.block_type == "mamba":
1369
+ layer_mask = mamba_mask
1370
+ elif mixer_block.block_type == "attention":
1371
+ layer_mask = causal_mask
1372
+ elif mixer_block.block_type == "mlp":
1373
+ layer_mask = None
1374
+ else:
1375
+ raise ValueError(f"Invalid block_type: {self.block_type}")
1376
+
1377
+ if output_hidden_states:
1378
+ all_hidden_states += (hidden_states,)
1379
+
1380
+ if self.gradient_checkpointing and self.training:
1381
+ hidden_states = self._gradient_checkpointing_func(
1382
+ mixer_block.__call__, hidden_states, cache_params, cache_position, layer_mask
1383
+ )
1384
+ else:
1385
+ hidden_states = mixer_block(
1386
+ hidden_states,
1387
+ cache_params=cache_params,
1388
+ cache_position=cache_position,
1389
+ attention_mask=layer_mask,
1390
+ )
1391
+
1392
+ # TODO: Store attentions
1393
+ # if output_attentions:
1394
+ # if layer_outputs[1] is not None:
1395
+ # # append attentions only of attention layers. Mamba layers return `None` as the attention weights
1396
+ # all_self_attns += (layer_outputs[1],)
1397
+
1398
+ # TODO (Check): should it happen before the forward pass?
1399
+ # if output_hidden_states:
1400
+ # all_hidden_states = all_hidden_states + (hidden_states,)
1401
+
1402
+ hidden_states = self.norm_f(hidden_states)
1403
+
1404
+ if output_hidden_states:
1405
+ all_hidden_states = all_hidden_states + (hidden_states,)
1406
+
1407
+ if not return_dict:
1408
+ return tuple(v for v in [hidden_states, cache_params, all_hidden_states] if v is not None)
1409
+
1410
+ return NemotronHOutput(
1411
+ last_hidden_state=hidden_states,
1412
+ cache_params=cache_params if use_cache else None,
1413
+ hidden_states=all_hidden_states,
1414
+ attentions=all_self_attns,
1415
+ )
1416
+
1417
+ # Copied from transformers.models.jamba.modeling_jamba.JambaModel._update_causal_mask
1418
+ def _update_causal_mask(self, attention_mask, input_tensor, cache_position):
1419
+ if self.config._attn_implementation == "flash_attention_2":
1420
+ if attention_mask is not None and 0.0 in attention_mask:
1421
+ return attention_mask
1422
+ return None
1423
+
1424
+ dtype, device = input_tensor.dtype, input_tensor.device
1425
+ min_dtype = torch.finfo(dtype).min
1426
+ sequence_length = input_tensor.shape[1]
1427
+ target_length = cache_position[-1] + 1
1428
+
1429
+ causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
1430
+ if sequence_length != 1:
1431
+ causal_mask = torch.triu(causal_mask, diagonal=1)
1432
+ causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
1433
+ causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
1434
+ if attention_mask is not None:
1435
+ causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
1436
+ if attention_mask.dim() == 2:
1437
+ mask_length = attention_mask.shape[-1]
1438
+ padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[:, None, None, :].eq(0.0)
1439
+ causal_mask[..., :mask_length] = causal_mask[..., :mask_length].masked_fill(padding_mask, min_dtype)
1440
+
1441
+ if (
1442
+ self.config._attn_implementation == "sdpa"
1443
+ and attention_mask is not None
1444
+ and attention_mask.device.type == "cuda"
1445
+ ):
1446
+ # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
1447
+ # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
1448
+ # Details: https://github.com/pytorch/pytorch/issues/110213
1449
+ causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
1450
+
1451
+ return causal_mask
1452
+
1453
+ def _update_mamba_mask(self, attention_mask, cache_position):
1454
+ """
1455
+ No need for zeroing states when
1456
+ 1. Cached forward
1457
+ 2. Attending to all inputs
1458
+ """
1459
+ mamba_mask = attention_mask
1460
+ if cache_position[0] > 0 or (attention_mask is not None and torch.all(attention_mask == 1)):
1461
+ mamba_mask = None
1462
+ return mamba_mask
1463
+
1464
+
1465
+ @add_start_docstrings(
1466
+ """
1467
+ The NEMOTRONH Model transformer with a language modeling head on top (linear layer with weights not tied to the input
1468
+ embeddings).
1469
+ """,
1470
+ NEMOTRONH_START_DOCSTRING,
1471
+ )
1472
+ class NemotronHForCausalLM(NemotronHPreTrainedModel, GenerationMixin):
1473
+ _tied_weights_keys = ["lm_head.weight"]
1474
+
1475
+ def __init__(self, config):
1476
+ super().__init__(config)
1477
+ self.backbone = NemotronHModel(config)
1478
+ self.vocab_size = config.vocab_size
1479
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1480
+
1481
+ # Initialize weights and apply final processing
1482
+ self.post_init()
1483
+
1484
+ def get_input_embeddings(self):
1485
+ return self.backbone.get_input_embeddings()
1486
+
1487
+ def set_input_embeddings(self, new_embeddings):
1488
+ return self.backbone.set_input_embeddings(new_embeddings)
1489
+
1490
+ def get_output_embeddings(self):
1491
+ return self.lm_head
1492
+
1493
+ def set_output_embeddings(self, new_embeddings):
1494
+ self.lm_head = new_embeddings
1495
+
1496
+ def get_decoder(self):
1497
+ return self.model
1498
+
1499
+ def set_decoder(self, decoder):
1500
+ self.model = decoder
1501
+
1502
+ def prepare_inputs_for_generation(
1503
+ self,
1504
+ input_ids,
1505
+ past_key_values=None,
1506
+ attention_mask=None,
1507
+ inputs_embeds=None,
1508
+ cache_position=None,
1509
+ position_ids=None,
1510
+ use_cache=True,
1511
+ **kwargs,
1512
+ ):
1513
+ # Copy from https://github.com/huggingface/transformers/blob/main/src/transformers/models/jamba/modeling_jamba.py
1514
+ # Overwitten -- uses `cache_params` as opposed to `past_key_values`
1515
+ empty_past_kv = past_key_values is None
1516
+
1517
+ # If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
1518
+ # Exception 1: when passing input_embeds, input_ids may be missing entries
1519
+ # Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
1520
+ # Exception 3: with synced GPUs cache_position may go out of bounds, but we only want dummy token in that case.
1521
+ # (we can't check exception 3 while compiling)
1522
+ if not empty_past_kv:
1523
+ if (
1524
+ inputs_embeds is not None # Exception 1
1525
+ or cache_position[-1] >= input_ids.shape[1] # Exception 3
1526
+ ):
1527
+ input_ids = input_ids[:, -cache_position.shape[0] :]
1528
+ elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
1529
+ input_ids = input_ids[:, cache_position]
1530
+ else:
1531
+ past_key_values = HybridMambaAttentionDynamicCache(
1532
+ self.config, input_ids.shape[0], self.dtype, device=self.device
1533
+ )
1534
+
1535
+ if attention_mask is not None and position_ids is None:
1536
+ # create position_ids on the fly for batch generation
1537
+ position_ids = attention_mask.long().cumsum(-1) - 1
1538
+ position_ids.masked_fill_(attention_mask == 0, 1)
1539
+ if not empty_past_kv:
1540
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1541
+
1542
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1543
+ if inputs_embeds is not None and empty_past_kv:
1544
+ model_inputs = {"inputs_embeds": inputs_embeds}
1545
+ else:
1546
+ model_inputs = {"input_ids": input_ids.contiguous()} # `contiguous()` needed for compilation use cases
1547
+
1548
+ model_inputs.update(
1549
+ {
1550
+ "position_ids": position_ids,
1551
+ "past_key_values": past_key_values,
1552
+ "use_cache": use_cache,
1553
+ "attention_mask": attention_mask,
1554
+ "logits_to_keep": self.config.num_logits_to_keep,
1555
+ "cache_position": cache_position,
1556
+ }
1557
+ )
1558
+ return model_inputs
1559
+
1560
+ @add_start_docstrings_to_model_forward(NEMOTRONH_INPUTS_DOCSTRING)
1561
+ @add_code_sample_docstrings(
1562
+ checkpoint=_CHECKPOINT_FOR_DOC,
1563
+ output_type=NemotronHCausalLMOutput,
1564
+ config_class=_CONFIG_FOR_DOC,
1565
+ )
1566
+ def forward(
1567
+ self,
1568
+ input_ids: Optional[torch.LongTensor] = None,
1569
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1570
+ position_ids: Optional[torch.LongTensor] = None,
1571
+ cache_params: Optional[HybridMambaAttentionDynamicCache] = None,
1572
+ labels: Optional[torch.LongTensor] = None,
1573
+ output_attentions: Optional[bool] = None,
1574
+ output_hidden_states: Optional[bool] = None,
1575
+ return_dict: Optional[bool] = None,
1576
+ use_cache: Optional[bool] = None,
1577
+ cache_position: Optional[torch.Tensor] = None,
1578
+ attention_mask: Optional[torch.Tensor] = None,
1579
+ **kwargs, # for now we need this for generation
1580
+ ) -> Union[Tuple, NemotronHCausalLMOutput]:
1581
+ r"""
1582
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1583
+ Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
1584
+ `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
1585
+ are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
1586
+ """
1587
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1588
+
1589
+ output_hidden_states = (
1590
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1591
+ )
1592
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1593
+
1594
+ nemotron_h_outputs = self.backbone(
1595
+ input_ids,
1596
+ cache_params=cache_params,
1597
+ inputs_embeds=inputs_embeds,
1598
+ output_attentions=output_attentions,
1599
+ output_hidden_states=output_hidden_states,
1600
+ return_dict=return_dict,
1601
+ use_cache=use_cache,
1602
+ cache_position=cache_position,
1603
+ attention_mask=attention_mask,
1604
+ )
1605
+ hidden_states = nemotron_h_outputs[0]
1606
+
1607
+ # TODO: Check zamba_modeling.py: https://github.com/huggingface/transformers/blob/d7188ba600e36d3fd191b12e19f1b3bb81a8404f/src/transformers/models/zamba/modeling_zamba.py#L1284C1-L1286C2
1608
+ #logits = self.lm_head(hidden_states.to(self.lm_head.weight.dtype)).float()
1609
+ logits = self.lm_head(hidden_states.to(self.lm_head.weight.dtype)).float()
1610
+
1611
+ loss = None
1612
+ if labels is not None:
1613
+ # move labels to correct device to enable model parallelism
1614
+ labels = labels.to(logits.device)
1615
+ # Shift so that tokens < n predict n
1616
+ shift_logits = logits[..., :-1, :].contiguous()
1617
+ shift_labels = labels[..., 1:].contiguous()
1618
+ # Flatten the tokens
1619
+ loss_fct = CrossEntropyLoss()
1620
+ loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
1621
+
1622
+ if not return_dict:
1623
+ output = (logits,) + nemotron_h_outputs[1:]
1624
+ return ((loss,) + output) if loss is not None else output
1625
+
1626
+ return NemotronHCausalLMOutput(
1627
+ loss=loss,
1628
+ logits=logits,
1629
+ cache_params=nemotron_h_outputs.cache_params,
1630
+ hidden_states=nemotron_h_outputs.hidden_states,
1631
+ attentions=nemotron_h_outputs.attentions,
1632
+ )
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "unk_token": {
17
+ "content": "<unk>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3277c00fe5fb3963b3cb7c07b7f183722d2af4d775a4aea7cfb3684d7cccbc2f
3
+ size 17078330
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff