Add link to paper and Github repo
#1
by
nielsr
HF Staff
- opened
README.md
CHANGED
@@ -1,26 +1,24 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
---
|
|
|
|
|
5 |
library_name: transformers
|
6 |
license: other
|
7 |
license_name: nvidia-open-model-license
|
8 |
-
license_link:
|
9 |
-
https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license/
|
10 |
pipeline_tag: text-generation
|
11 |
-
language:
|
12 |
-
- en
|
13 |
tags:
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
---
|
21 |
|
22 |
# AceReason-Nemotron: Advancing Math and Code Reasoning through Reinforcement Learning
|
23 |
|
|
|
|
|
24 |
<p align="center">
|
25 |
|
26 |
[](https://arxiv.org/abs/2505.16400)
|
@@ -33,7 +31,7 @@ tags:
|
|
33 |
|
34 |
## 🔥News
|
35 |
- **6/16/2025**: We are excited to share our new release combining SFT with RL: **AceReason-Nemotron-1.1-7B**
|
36 |
-
- Paper: https://
|
37 |
- Model: https://huggingface.co/nvidia/AceReason-Nemotron-1.1-7B
|
38 |
- 4M SFT Data: https://huggingface.co/datasets/nvidia/AceReason-1.1-SFT
|
39 |
- **6/11/2025**: We share our evaluation toolkit at [AceReason Evalution](https://huggingface.co/nvidia/AceReason-Nemotron-14B/blob/main/README_EVALUATION.md) including:
|
@@ -68,10 +66,6 @@ We evaluate our model against competitive reasoning models of comparable size wi
|
|
68 |
| [AceReason-Nemotron-7B 🤗](https://huggingface.co/nvidia/AceReason-Nemotron-7B)| 69.0 | 53.6 | 51.8 | 44.1 |
|
69 |
| [AceReason-Nemotron-14B 🤗](https://huggingface.co/nvidia/AceReason-Nemotron-14B)| 78.6 | 67.4 | 61.1 | 54.9 |
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
## How to use
|
76 |
```python
|
77 |
import torch
|
@@ -104,7 +98,6 @@ generated_ids = [
|
|
104 |
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
105 |
```
|
106 |
|
107 |
-
|
108 |
## Usage Recommendations
|
109 |
|
110 |
1. Don't include a system prompt; instead, place all instructions directly in the user prompt.
|
@@ -114,15 +107,33 @@ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
|
114 |
question = "" # code question
|
115 |
starter_code = "" # starter code function header
|
116 |
|
117 |
-
code_instruction_nostartercode = """Write Python code to solve the problem. Please place the solution code in the following format
|
118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
if starter_code != "":
|
120 |
-
question += "
|
121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
else:
|
123 |
-
question += "
|
|
|
|
|
124 |
|
125 |
-
final_prompt = "<|User|>" + question + "<|Assistant|><think
|
|
|
126 |
```
|
127 |
4. Our inference engine for evaluation is **vLLM==0.7.3** using top-p=0.95, temperature=0.6, max_tokens=32768.
|
128 |
|
@@ -130,15 +141,16 @@ final_prompt = "<|User|>" + question + "<|Assistant|><think>\n"
|
|
130 |
|
131 |
Please check evaluation code, scripts, cached prediction files in https://huggingface.co/nvidia/AceReason-Nemotron-14B/blob/main/README_EVALUATION.md
|
132 |
|
|
|
|
|
|
|
133 |
|
134 |
## Correspondence to
|
135 |
Yang Chen ([email protected]), Zhuolin Yang ([email protected]), Zihan Liu ([email protected]), Chankyu Lee ([email protected]), Wei Ping ([email protected])
|
136 |
|
137 |
-
|
138 |
## License
|
139 |
Your use of this model is governed by the [NVIDIA Open Model License](https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license/).
|
140 |
|
141 |
-
|
142 |
## Citation
|
143 |
```
|
144 |
@article{chen2025acereason,
|
@@ -147,5 +159,4 @@ Your use of this model is governed by the [NVIDIA Open Model License](https://ww
|
|
147 |
journal={arXiv preprint arXiv:2505.16400},
|
148 |
year={2025}
|
149 |
}
|
150 |
-
```
|
151 |
-
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
library_name: transformers
|
5 |
license: other
|
6 |
license_name: nvidia-open-model-license
|
7 |
+
license_link: https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license/
|
|
|
8 |
pipeline_tag: text-generation
|
|
|
|
|
9 |
tags:
|
10 |
+
- nvidia
|
11 |
+
- reasoning
|
12 |
+
- math
|
13 |
+
- code
|
14 |
+
- reinforcement learning
|
15 |
+
- pytorch
|
16 |
---
|
17 |
|
18 |
# AceReason-Nemotron: Advancing Math and Code Reasoning through Reinforcement Learning
|
19 |
|
20 |
+
This repository contains the model for AceReason-Nemotron 1.1 as presented in [AceReason-Nemotron 1.1: Advancing Math and Code Reasoning through SFT and RL Synergy](https://huggingface.co/papers/2506.13284).
|
21 |
+
|
22 |
<p align="center">
|
23 |
|
24 |
[](https://arxiv.org/abs/2505.16400)
|
|
|
31 |
|
32 |
## 🔥News
|
33 |
- **6/16/2025**: We are excited to share our new release combining SFT with RL: **AceReason-Nemotron-1.1-7B**
|
34 |
+
- Paper: https://huggingface.co/papers/2506.13284
|
35 |
- Model: https://huggingface.co/nvidia/AceReason-Nemotron-1.1-7B
|
36 |
- 4M SFT Data: https://huggingface.co/datasets/nvidia/AceReason-1.1-SFT
|
37 |
- **6/11/2025**: We share our evaluation toolkit at [AceReason Evalution](https://huggingface.co/nvidia/AceReason-Nemotron-14B/blob/main/README_EVALUATION.md) including:
|
|
|
66 |
| [AceReason-Nemotron-7B 🤗](https://huggingface.co/nvidia/AceReason-Nemotron-7B)| 69.0 | 53.6 | 51.8 | 44.1 |
|
67 |
| [AceReason-Nemotron-14B 🤗](https://huggingface.co/nvidia/AceReason-Nemotron-14B)| 78.6 | 67.4 | 61.1 | 54.9 |
|
68 |
|
|
|
|
|
|
|
|
|
69 |
## How to use
|
70 |
```python
|
71 |
import torch
|
|
|
98 |
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
99 |
```
|
100 |
|
|
|
101 |
## Usage Recommendations
|
102 |
|
103 |
1. Don't include a system prompt; instead, place all instructions directly in the user prompt.
|
|
|
107 |
question = "" # code question
|
108 |
starter_code = "" # starter code function header
|
109 |
|
110 |
+
code_instruction_nostartercode = """Write Python code to solve the problem. Please place the solution code in the following format:
|
111 |
+
```python
|
112 |
+
# Your solution code here
|
113 |
+
```"""
|
114 |
+
code_instruction_hasstartercode = """Please place the solution code in the following format:
|
115 |
+
```python
|
116 |
+
# Your solution code here
|
117 |
+
```"""
|
118 |
if starter_code != "":
|
119 |
+
question += "
|
120 |
+
|
121 |
+
" + "Solve the problem starting with the provided function header.
|
122 |
+
|
123 |
+
Function header:
|
124 |
+
" + "```
|
125 |
+
" + starter_code + "
|
126 |
+
```"
|
127 |
+
question += "
|
128 |
+
|
129 |
+
" + code_instruction_hasstartercode
|
130 |
else:
|
131 |
+
question += "
|
132 |
+
|
133 |
+
" + code_instruction_nostartercode
|
134 |
|
135 |
+
final_prompt = "<|User|>" + question + "<|Assistant|><think>
|
136 |
+
"
|
137 |
```
|
138 |
4. Our inference engine for evaluation is **vLLM==0.7.3** using top-p=0.95, temperature=0.6, max_tokens=32768.
|
139 |
|
|
|
141 |
|
142 |
Please check evaluation code, scripts, cached prediction files in https://huggingface.co/nvidia/AceReason-Nemotron-14B/blob/main/README_EVALUATION.md
|
143 |
|
144 |
+
## Code
|
145 |
+
|
146 |
+
Our code is available at https://github.com/NVIDIA/TRT-LLM/tree/main/examples/research/ace_reason
|
147 |
|
148 |
## Correspondence to
|
149 |
Yang Chen ([email protected]), Zhuolin Yang ([email protected]), Zihan Liu ([email protected]), Chankyu Lee ([email protected]), Wei Ping ([email protected])
|
150 |
|
|
|
151 |
## License
|
152 |
Your use of this model is governed by the [NVIDIA Open Model License](https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license/).
|
153 |
|
|
|
154 |
## Citation
|
155 |
```
|
156 |
@article{chen2025acereason,
|
|
|
159 |
journal={arXiv preprint arXiv:2505.16400},
|
160 |
year={2025}
|
161 |
}
|
162 |
+
```
|
|