MultiPLCoder-15b
15 billion parameter version of MultiPLCoder, a set of StarCoder-based models finetuned on the MultiPL-T dataset. These models are state-of-the-art at low-resource languages, such as: Lua, Racket, and OCaml.
This 15 billion parameter model is the most capable of the MultiPLCoder family. However, it requires a dedicated GPU for inference. For a smaller model that fits on the CPU, check out MultiPLCoder-1b.
Language Revision Index
This is the revision index for the best-performing models for their respective langauge.
Langauge | Revision ID | Epoch |
---|---|---|
Lua | 6069aa54dd554404dd18fccdf5dedd56b8088e74 |
4 |
Racket | f0c77c06482f436f469007f20d731cb9dd73d609 |
8 |
OCaml | e7babda985786810707200ff885df6105de7dc56 |
4 |
Usage
To utilize one of the models in this repository, you must first select a commit revision for that model from the table above. For example, to use the Lua model:
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("nuprl/MultiPLCoder-15b")
lua_revision="6069aa54dd554404dd18fccdf5dedd56b8088e74"
model = AutoModelForCausalLM.from_pretrained("nuprl/MultiPLCoder-15b", revision=lua_revision).cuda()
Note that the model's default configuration does not enable caching, therefore you must specify to use the cache on generation.
toks = tokenizer.encode("-- Fibonacci iterative", return_tensors="pt").cuda()
out = model.generate(toks, use_cache=True, do_sample=True, temperature=0.2, top_p=0.95, max_length=256)
print(tokenizer.decode(out[0], skip_special_tokens=True))
-- Fibonacci iterative.
local function fib_iterative(n)
if n == 0 or n == 1 then
return n
end
local previous, current = 0, 1
for _ = 2, n do
previous, current = current, current + previous
end
return current
end
- Downloads last month
- 486
Model tree for nuprl/MultiPL-T-StarCoderBase_15b
Dataset used to train nuprl/MultiPL-T-StarCoderBase_15b
Collection including nuprl/MultiPL-T-StarCoderBase_15b
Evaluation results
- pass@1 on MultiPL-HumanEval (Lua)self-reported0.310
- pass@1 on MultiPL-HumanEval (Lua)self-reported0.210
- pass@1 on MultiPL-HumanEval (Lua)self-reported0.199