Qwen-Image
Collection
2 items
โข
Updated
โข
1
This repository contains Nunchaku-quantized versions of Qwen-Image, designed to generate high-quality images from text prompts, advances in complex text rendering. It is optimized for efficient inference while maintaining minimal loss in performance.
svdq-int4_r32-qwen-image.safetensors
: SVDQuant INT4 (rank 32) Qwen-Image model. For users with non-Blackwell GPUs (pre-50-series).svdq-int4_r128-qwen-image.safetensors
: SVDQuant INT4 (rank 128) Qwen-Image model. For users with non-Blackwell GPUs (pre-50-series). It offers better quality than the rank 32 model, but it is slower.svdq-int4_r32-qwen-image-lightningv1.0-4steps.safetensors
: SVDQuant INT4 (rank 32) 4-step Qwen-Image model by fusing Qwen-Image-Lightning-4steps-V1.0-bf16.safetensors using LoRA strength = 1.0. For users with non-Blackwell GPUs (pre-50-series).svdq-int4_r128-qwen-image-lightningv1.0-4steps.safetensors
: SVDQuant INT4 (rank 128) 4-step Qwen-Image model by fusing Qwen-Image-Lightning-4steps-V1.0-bf16.safetensors using LoRA strength = 1.0. For users with non-Blackwell GPUs (pre-50-series).svdq-int4_r32-qwen-image-lightningv1.1-8steps.safetensors
: SVDQuant INT4 (rank 32) 8-step Qwen-Image model by fusing Qwen-Image-Lightning-8steps-V1.1-bf16.safetensors using LoRA strength = 1.0. For users with non-Blackwell GPUs (pre-50-series).svdq-int4_r128-qwen-image-lightningv1.1-8steps.safetensors
: SVDQuant INT4 (rank 128) 8-step Qwen-Image model by fusing Qwen-Image-Lightning-8steps-V1.1-bf16.safetensors using LoRA strength = 1.0. For users with non-Blackwell GPUs (pre-50-series).svdq-fp4_r32-qwen-image.safetensors
: SVDQuant NVFP4 (rank 32) Qwen-Image model. For users with Blackwell GPUs (50-series).svdq-fp4_r128-qwen-image.safetensors
: SVDQuant NVFP4 (rank 128) Qwen-Image model. For users with Blackwell GPUs (50-series). It offers better quality than the rank 32 model, but it is slower.svdq-fp4_r32-qwen-image-lightningv1.0-4steps.safetensors
: SVDQuant NVFP4 (rank 32) 4-step Qwen-Image model by fusing Qwen-Image-Lightning-4steps-V1.0-bf16.safetensors using LoRA strength = 1.0. For users with Blackwell GPUs (50-series).svdq-fp4_r128-qwen-image-lightningv1.0-4steps.safetensors
: SVDQuant NVFP4 (rank 128) 4-step Qwen-Image model by fusing Qwen-Image-Lightning-4steps-V1.0-bf16.safetensors using LoRA strength = 1.0. For users with Blackwell GPUs (50-series).svdq-fp4_r32-qwen-image-lightningv1.1-8steps.safetensors
: SVDQuant NVFP4 (rank 32) 8-step Qwen-Image model by fusing Qwen-Image-Lightning-8steps-V1.1-bf16.safetensors using LoRA strength = 1.0. For users with Blackwell GPUs (50-series).svdq-fp4_r128-qwen-image-lightningv1.1-8steps.safetensors
: SVDQuant NVFP4 (rank 128) 8-step Qwen-Image model by fusing Qwen-Image-Lightning-8steps-V1.1-bf16.safetensors using LoRA strength = 1.0. For users with Blackwell GPUs (50-series).@inproceedings{
li2024svdquant,
title={SVDQuant: Absorbing Outliers by Low-Rank Components for 4-Bit Diffusion Models},
author={Li*, Muyang and Lin*, Yujun and Zhang*, Zhekai and Cai, Tianle and Li, Xiuyu and Guo, Junxian and Xie, Enze and Meng, Chenlin and Zhu, Jun-Yan and Han, Song},
booktitle={The Thirteenth International Conference on Learning Representations},
year={2025}
}
Base model
Qwen/Qwen-Image