numan98's picture
End of training
5896287 verified
---
library_name: transformers
language:
- ar
license: apache-2.0
base_model: tarteel-ai/whisper-tiny-ar-quran
tags:
- generated_from_trainer
datasets:
- numan98/synth-incorrect-verses
metrics:
- wer
model-index:
- name: Nextayah Tiny Whisper Finetuned
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Synthetic Incorrect Verses
type: numan98/synth-incorrect-verses
config: default
split: None
args: 'split: test'
metrics:
- name: Wer
type: wer
value: 17.25043782837128
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Nextayah Tiny Whisper Finetuned
This model is a fine-tuned version of [tarteel-ai/whisper-tiny-ar-quran](https://huggingface.co/tarteel-ai/whisper-tiny-ar-quran) on the Synthetic Incorrect Verses dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0921
- Wer: 17.2504
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 2000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-------:|:----:|:---------------:|:-------:|
| 0.0217 | 8.7719 | 500 | 0.1236 | 22.5044 |
| 0.0025 | 17.5439 | 1000 | 0.1063 | 21.0158 |
| 0.0001 | 26.3158 | 1500 | 0.0910 | 17.4256 |
| 0.0001 | 35.0877 | 2000 | 0.0921 | 17.2504 |
### Framework versions
- Transformers 4.48.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0