SentenceTransformer based on BAAI/bge-small-zh-v1.5
This is a sentence-transformers model finetuned from BAAI/bge-small-zh-v1.5 on the train dataset. It maps sentences & paragraphs to a 512-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-small-zh-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 512 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- train
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 512, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'qa_217',
'油壓箱table spin clamp油管壓接不良有漏油現象',
'故障狀況 油壓箱table spin clamp油管壓接不良有漏油現象 處理狀況 備油管為客戶更換',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 512]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
train
- Dataset: train
- Size: 164 training samples
- Columns:
question
,chunk
, andlabel
- Approximate statistics based on the first 164 samples:
question chunk label type string string float details - min: 6 tokens
- mean: 23.19 tokens
- max: 86 tokens
- min: 21 tokens
- mean: 79.21 tokens
- max: 176 tokens
- min: 1.0
- mean: 1.0
- max: 1.0
- Samples:
question chunk label 1中噴箱體壓力表異常
故障狀況 1中噴箱體壓力表異常 處理狀況 1依照廠商檢查方案過濾灌乾淨未阻塞濾心乾淨壓力表洩氣未改善 2更換壓力表安裝測試中噴壓力已改善客戶確認OK
1.0
1用戶反應機台有漏水現象
故障狀況 1用戶反應機台有漏水現象 處理狀況 1查修後危機台左後立柱位置漏出拆開Y後伸縮護罩鈑金重新填上矽利康測試確認已無漏水
1.0
風槍的管路破裂會漏風
故障狀況 風槍的管路破裂會漏風 處理狀況 備風槍管為客戶更換
1.0
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
train
- Dataset: train
- Size: 40 evaluation samples
- Columns:
question
,chunk
, andlabel
- Approximate statistics based on the first 40 samples:
question chunk label type string string float details - min: 7 tokens
- mean: 22.3 tokens
- max: 90 tokens
- min: 23 tokens
- mean: 69.75 tokens
- max: 144 tokens
- min: 1.0
- mean: 1.0
- max: 1.0
- Samples:
question chunk label 冷氣機結冰
故障狀況 冷氣機結冰 處理狀況 經威士頓評估後 同意保固提供一片冷氣控制板給客戶更換
1.0
1客戶要求刀臂sensor異常時需動作停止避免刀臂一直揮造成人員受傷
故障狀況 1客戶要求刀臂sensor異常時需動作停止避免刀臂一直揮造成人員受傷 處理狀況 1修改PLC並測試所有sensor異常時需刀臂停止測試給用戶確認ok
1.0
更換鏈條以及鏈條軸承
故障狀況 更換鏈條以及鏈條軸承 處理狀況 備料為客戶更換
1.0
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 1max_steps
: 500warmup_ratio
: 0.1fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: 500lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | train loss |
---|---|---|---|
9.0909 | 100 | 2.3557 | 2.8228 |
18.1818 | 200 | 0.3241 | 2.9318 |
27.2727 | 300 | 0.0786 | 3.0996 |
36.3636 | 400 | 0.0408 | 3.1550 |
45.4545 | 500 | 0.0328 | 3.1758 |
9.0909 | 100 | 0.2424 | 0.0369 |
18.1818 | 200 | 0.0199 | 0.0374 |
27.2727 | 300 | 0.0231 | 0.0395 |
36.3636 | 400 | 0.0178 | 0.0387 |
45.4545 | 500 | 0.0157 | 0.0385 |
9.0909 | 100 | 0.0172 | 0.0000 |
18.1818 | 200 | 0.002 | 0.0000 |
27.2727 | 300 | 0.0016 | 0.0000 |
36.3636 | 400 | 0.0014 | 0.0000 |
45.4545 | 500 | 0.0013 | 0.0000 |
Framework Versions
- Python: 3.11.12
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.5.1
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 8
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for ntucool/mlogging
Base model
BAAI/bge-small-zh-v1.5