whisper-large-v3-sandi-7k-1024-28steps

This model is a fine-tuned version of openai/whisper-large-v3 on the ntnu-smil/sandi2025-ds dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0275
  • Wer: 73.8237
  • Cer: 203.1654
  • Decode Runtime: 257.7123
  • Wer Runtime: 0.2072
  • Cer Runtime: 0.4935

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 32
  • total_train_batch_size: 1024
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.98) and epsilon=1e-06 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • training_steps: 28

Training results

Training Loss Epoch Step Validation Loss Wer Cer Decode Runtime Wer Runtime Cer Runtime
1.9026 1.0357 7 1.3670 70.5577 206.9010 266.1791 0.2147 0.5053
1.2477 2.0714 14 1.1783 86.2572 223.6346 268.9910 0.2241 0.5015
1.07 3.1071 21 1.0605 78.7713 211.1141 262.5822 0.2186 0.5076
1.0348 4.1429 28 1.0275 73.8237 203.1654 257.7123 0.2072 0.4935

Framework versions

  • PEFT 0.15.2
  • Transformers 4.51.3
  • Pytorch 2.4.1+cu124
  • Datasets 3.5.1
  • Tokenizers 0.21.1
Downloads last month
7
Safetensors
Model size
1.54B params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for ntnu-smil/whisper-large-v3-sandi-7k-1024-28steps-merged

Finetuned
(502)
this model

Dataset used to train ntnu-smil/whisper-large-v3-sandi-7k-1024-28steps-merged

Evaluation results