whisper-sm-arabic / README.md
nouraa5's picture
End of training
a923afe verified
metadata
library_name: transformers
language:
  - ar
license: apache-2.0
base_model: openai/whisper-small
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_17_0
metrics:
  - wer
model-index:
  - name: whisper-sm-arabic-nouraa5
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_17_0
          config: ar
          split: None
          args: 'config: ar, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 90.9278350515464

whisper-sm-arabic-nouraa5

This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7124
  • Wer: 90.9278

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
No log 1.0 32 3.4835 64.3918
2.7298 2.0 64 2.1102 97.8557
2.7298 3.0 96 1.4302 82.5361
1.2041 4.0 128 1.2875 73.7113
0.7692 5.0 160 1.1756 67.5464
0.7692 6.0 192 1.0568 67.5876
0.5691 7.0 224 0.7701 61.3196
0.2735 8.0 256 0.6364 79.8351
0.2735 9.0 288 0.6546 82.8247
0.0953 9.704 310 0.7124 90.9278

Framework versions

  • Transformers 4.51.1
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1