Built with Axolotl

See axolotl config

axolotl version: 0.10.0.dev0

base_model: RedHatAI/Sparse-Llama-3.1-8B-2of4

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: trl-lib/tldr
    type:
      system_prompt: "Give a TL;DR of the following Reddit post."
      field_system: system
      field_instruction: prompt
      field_output: completion
      format: "<|user|>\n{instruction}\n<|assistant|>\n"
      no_input_format: "<|user|>\n{instruction}\n<|assistant|>\n"
    split: train

dataset_prepared_path: last_run_prepared
output_dir: Sparse-Llama-3.1-8B-2of4-tldr

sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: true

torch.compile: true
gradient_accumulation_steps: 1
micro_batch_size: 1
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 1e-5
max_grad_norm: 1.0

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false

train_on_inputs: false
bf16: auto
fp16:
tf32: false

early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
flash_attention: true

warmup_ratio: 0.05
eval_steps: 0.05
val_set_size: 0.05
save_strategy: "best"
metric_for_best_model: "loss"

debug:
deepspeed:
weight_decay: 0.0
special_tokens:
  pad_token: "<|end_of_text|>"

seed: 0

plugins:
  - axolotl.integrations.liger.LigerPlugin
  - axolotl.integrations.llm_compressor.LLMCompressorPlugin

liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
liger_layer_norm: true
liger_fused_linear_cross_entropy: true

llmcompressor:
  recipe:
    finetuning_stage:
      finetuning_modifiers:
        ConstantPruningModifier:
          targets: [
            're:.*q_proj.weight',
            're:.*k_proj.weight',
            're:.*v_proj.weight',
            're:.*o_proj.weight',
            're:.*gate_proj.weight',
            're:.*up_proj.weight',
            're:.*down_proj.weight',
          ]
          start: 0
  save_compressed: true

Sparse-Llama-3.1-8B-2of4-tldr

This model is a fine-tuned version of RedHatAI/Sparse-Llama-3.1-8B-2of4 on the trl-lib/tldr dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8295

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 0
  • distributed_type: multi-GPU
  • num_devices: 8
  • total_train_batch_size: 8
  • total_eval_batch_size: 8
  • optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 66
  • num_epochs: 1.0

Training results

Training Loss Epoch Step Validation Loss
2.4149 0.0008 1 2.2321
1.9603 0.0505 67 1.8758
1.8909 0.1010 134 1.8560
1.8109 0.1515 201 1.8491
1.7688 0.2020 268 1.8441
1.8535 0.2524 335 1.8411
1.773 0.3029 402 1.8381
1.8349 0.3534 469 1.8360
1.8382 0.4039 536 1.8342
1.7975 0.4544 603 1.8328
1.8171 0.5049 670 1.8317
1.8309 0.5554 737 1.8309
1.8158 0.6059 804 1.8303
1.8684 0.6564 871 1.8298
1.7743 0.7069 938 1.8296
1.7132 0.7573 1005 1.8295
1.7912 0.8078 1072 1.8294
1.9432 0.8583 1139 1.8295
1.7789 0.9088 1206 1.8294
1.8084 0.9593 1273 1.8295

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.7.0+cu126
  • Datasets 3.5.1
  • Tokenizers 0.21.1
Downloads last month
4
Safetensors
Model size
5.41B params
Tensor type
I64
·
BF16
·
U8
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for nm-testing/Sparse-Llama-3.1-8B-2of4-tldr

Quantized
(5)
this model

Dataset used to train nm-testing/Sparse-Llama-3.1-8B-2of4-tldr