See axolotl config
axolotl version: 0.10.0.dev0
base_model: meta-llama/Llama-3.1-8B
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: trl-lib/tldr
type:
system_prompt: "Give a TL;DR of the following Reddit post."
field_system: system
field_instruction: prompt
field_output: completion
format: "<|user|>\n{instruction}\n<|assistant|>\n"
no_input_format: "<|user|>\n{instruction}\n<|assistant|>\n"
split: train
dataset_prepared_path: /mnt/nvme2/alexandre/spft/dense/dense_lr1e-5_ep3_norm1/last_run_prepared
output_dir: /mnt/nvme2/alexandre/spft/dense/dense_lr1e-5_ep3_norm1/Sparse-Llama-3.1-8B-2of4-tldr
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: true
torch.compile: true
gradient_accumulation_steps: 1
micro_batch_size: 4
num_epochs: 3
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 1e-5
max_grad_norm: 1
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
train_on_inputs: false
bf16: auto
fp16:
tf32: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
flash_attention: true
warmup_ratio: 0.05
evals_per_epoch: 4
val_set_size: 0.05
save_strategy: "best"
save_total_limit: 1
metric_for_best_model: "loss"
debug:
deepspeed:
weight_decay: 0.0
special_tokens:
pad_token: "<|end_of_text|>"
seed: 0
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
liger_layer_norm: true
liger_fused_linear_cross_entropy: true
mnt/nvme2/alexandre/spft/dense/dense_lr1e-5_ep3_norm1/Sparse-Llama-3.1-8B-2of4-tldr
This model is a fine-tuned version of meta-llama/Llama-3.1-8B on the trl-lib/tldr dataset. It achieves the following results on the evaluation set:
- Loss: 1.7526
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 0
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 49
- num_epochs: 3.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.2572 | 0.0031 | 1 | 2.2288 |
1.7865 | 0.2508 | 82 | 1.7680 |
1.7257 | 0.5015 | 164 | 1.7567 |
1.7343 | 0.7523 | 246 | 1.7489 |
1.7688 | 1.0031 | 328 | 1.7441 |
1.6822 | 1.2538 | 410 | 1.7493 |
1.6085 | 1.5046 | 492 | 1.7480 |
1.6627 | 1.7554 | 574 | 1.7444 |
1.729 | 2.0061 | 656 | 1.7426 |
1.6149 | 2.2569 | 738 | 1.7540 |
1.6002 | 2.5076 | 820 | 1.7537 |
1.6573 | 2.7584 | 902 | 1.7526 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.7.0+cu126
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- 62
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for nm-testing/Llama-3.1-8B-tldr
Base model
meta-llama/Llama-3.1-8B