res_nw_lev_aragpt2-large

This model is a fine-tuned version of aubmindlab/aragpt2-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0510
  • Bleu: 0.1964
  • Rouge1: 0.5391
  • Rouge2: 0.3196
  • Rougel: 0.5372

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 20.0

Training results

Training Loss Epoch Step Validation Loss Bleu Rouge1 Rouge2 Rougel
0.0936 1.0 10123 0.0602 0.0756 0.4154 0.1873 0.4125
0.0531 2.0 20246 0.0549 0.1086 0.4729 0.2428 0.4706
0.043 3.0 30369 0.0522 0.1457 0.5068 0.2846 0.5043
0.0347 4.0 40492 0.0510 0.1964 0.5391 0.3196 0.5372
0.029 5.0 50615 0.0511 0.2436 0.5627 0.3532 0.5608
0.0247 6.0 60738 0.0522 0.2849 0.5778 0.3798 0.5761
0.0218 7.0 70861 0.0531 0.3156 0.5943 0.4031 0.5925
0.0195 8.0 80984 0.0551 0.3369 0.5990 0.4135 0.5972
0.0179 9.0 91107 0.0563 0.3488 0.6067 0.4231 0.6048

Framework versions

  • Transformers 4.45.0.dev0
  • Pytorch 2.3.1+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
2
Safetensors
Model size
792M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model's library.

Model tree for nlparabic/res_nw_lev_aragpt2-large

Finetuned
(6)
this model