metadata
license: apache-2.0
language:
- zh
- en
tags:
- qwen
- qwen3
- unsloth
- QiMing
- QiMing-holos
- bagua
- decision-making
- strategic-analysis
- cognitive-architecture
- chat
- lora
- philosophy-driven-ai
- mlx
pipeline_tag: text-generation
base_model: aifeifei798/QiMing-v1.0-14B
library_name: mlx
QiMing-v1.0-14B-qx64-hi-mlx
This model QiMing-v1.0-14B-qx64-hi-mlx was converted to MLX format from aifeifei798/QiMing-v1.0-14B using mlx-lm version 0.26.4.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("QiMing-v1.0-14B-qx64-hi-mlx")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)