Edit model card

gpt2-lang-ident

This model is a fine-tuned version of openai-community/gpt2 on sampled sentences from stanford-oval/ccnews and qanastek/EMEA-V3 datasets. It achieves the following results on the evaluation set:

  • Loss: 0.1210
  • Accuracy: 0.9721

Model description

This model is trained to predict the language of the input text.

Intended uses & limitations

This model can predict the following 90 languages:

[
    "af", "am", "ar", "as", "az", "ba", "be", "bg", "bn", "ca",
    "ceb", "ckb", "cs", "cy", "da", "de", "dv", "el", "en", "eo",
    "es", "et", "eu", "fa", "fi", "fr", "fy", "ga", "gd", "gl",
    "gu", "he", "hi", "hr", "hu", "hy", "id", "is", "it", "ja",
    "ka", "kk", "kn", "ku", "ky", "la", "lb", "lt", "lv", "mg",
    "mk", "ml", "mn", "mr", "mt", "my", "nds", "ne", "nl", "nn",
    "no", "or", "pa", "pl", "ps", "pt", "ro", "ru", "sah", "sd",
    "si", "sk", "sl", "sq", "sr", "sv", "sw", "ta", "te", "tg",
    "th", "tk", "tl", "tr", "tt", "ug", "uk", "ur", "vi", "yi"
]

How to use:

from transformers import (AutoModelForSequenceClassification, AutoTokenizer,
                          pipeline)

checkpoint = f"nie3e/gpt2-lang-ident"
model = AutoModelForSequenceClassification.from_pretrained(checkpoint)
tokenizer = AutoTokenizer.from_pretrained(checkpoint)

pipe = pipeline(
    task="text-classification",
    model=model,
    tokenizer=tokenizer,
    top_k=5
)

result = pipe("To jest model służący do identyfikacji języka!")
print(result)
[[{'label': 'pl', 'score': 0.9999653100967407}, {'label': 'sr', 'score': 1.5228776646836195e-05}, {'label': 'hr', 'score': 1.057955432770541e-05}, {'label': 'bn', 'score': 1.590750912328076e-06}, {'label': 'cs', 'score': 1.3942196801508544e-06}]]

Training and evaluation data

Training data ([lang]: count)
[bn]: 1947
[ar]: 1947
[vi]: 1947
[uk]: 1947
[kn]: 1947
[mr]: 1947
[id]: 1947
[te]: 1947
[no]: 1947
[ru]: 1947
[he]: 1947
[az]: 1947
[ca]: 1946
[fa]: 1946
[hi]: 1946
[th]: 1946
[tr]: 1946
[mk]: 1946
[ta]: 1945
[sq]: 1945
[ur]: 1942
[gu]: 1939
[ml]: 1936
[is]: 1738
[de]: 1543
[da]: 1521
[fi]: 1461
[el]: 1431
[nl]: 1424
[fr]: 1408
[cs]: 1401
[es]: 1397
[en]: 1394
[lt]: 1392
[hu]: 1379
[pt]: 1375
[lv]: 1373
[it]: 1360
[pl]: 1355
[sk]: 1355
[et]: 1348
[sl]: 1328
[sv]: 1300
[bg]: 1278
[mt]: 1234
[ro]: 1218
[kk]: 1179
[hy]: 1176
[or]: 1112
[pa]: 780
[sr]: 744
[as]: 735
[hr]: 722
[ne]: 626
[gl]: 566
[ckb]: 563
[ka]: 560
[ug]: 485
[ky]: 453
[eu]: 351
[ps]: 311
[tl]: 307
[fy]: 290
[mn]: 289
[si]: 244
[cy]: 214
[nn]: 212
[ku]: 195
[tg]: 176
[am]: 141
[tt]: 121
[ja]: 104
[lb]: 93
[tk]: 72
[be]: 64
[sw]: 45
[af]: 44
[my]: 40
[ceb]: 35
[la]: 33
[dv]: 20
[ba]: 19
[ga]: 19
[eo]: 19
[gd]: 16
[mg]: 15
[yi]: 14
[sah]: 14
[sd]: 11
[nds]: 11
Eval data ([lang]: count)
[te]: 195
[mk]: 195
[bn]: 195
[uk]: 195
[hi]: 195
[ar]: 195
[sq]: 195
[kn]: 195
[tr]: 195
[ca]: 195
[az]: 195
[fa]: 195
[ru]: 195
[mr]: 195
[id]: 195
[no]: 195
[vi]: 195
[th]: 195
[he]: 195
[gu]: 194
[ml]: 194
[ta]: 194
[ur]: 194
[is]: 174
[de]: 154
[da]: 152
[fi]: 146
[el]: 143
[nl]: 142
[fr]: 141
[es]: 140
[cs]: 140
[en]: 139
[lt]: 139
[hu]: 138
[lv]: 137
[pt]: 137
[it]: 136
[et]: 135
[pl]: 135
[sk]: 135
[sl]: 133
[sv]: 130
[bg]: 128
[mt]: 123
[ro]: 122
[hy]: 118
[kk]: 118
[or]: 111
[pa]: 78
[sr]: 74
[as]: 74
[hr]: 72
[ne]: 63
[gl]: 57
[ckb]: 56
[ka]: 56
[ug]: 49
[ky]: 45
[eu]: 35
[ps]: 31
[tl]: 31
[mn]: 29
[fy]: 29
[si]: 24
[nn]: 21
[cy]: 21
[ku]: 19
[tg]: 18
[am]: 14
[tt]: 12
[ja]: 10
[lb]: 9
[tk]: 7
[be]: 6
[my]: 4
[sw]: 4
[af]: 4
[ceb]: 3
[la]: 3
[ba]: 2
[dv]: 2
[eo]: 2
[gd]: 2
[ga]: 2
[mg]: 1
[sd]: 1
[nds]: 1
[yi]: 1
[sah]: 1

Training procedure

GPU: RTX 3090
Training time: 1h 53min

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.2833 1.0 2812 0.2004 0.94
0.168 2.0 5625 0.1567 0.954
0.1131 3.0 8437 0.1429 0.9586
0.0832 4.0 11250 0.1257 0.967
0.0635 5.0 14062 0.1222 0.9682
0.0479 6.0 16875 0.1214 0.9704
0.0361 7.0 19687 0.1255 0.9712
0.0258 8.0 22500 0.1178 0.9712
0.0243 9.0 25312 0.1223 0.9724
0.0171 10.0 28120 0.1210 0.9721

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
25
Safetensors
Model size
125M params
Tensor type
F32
·
Inference Examples
Unable to determine this model's library. Check the docs .

Model tree for nie3e/gpt2-lang-ident

Finetuned
(1138)
this model