hubert-large-timit-upsample-decoder

This model is a fine-tuned version of facebook/hubert-large-ls960-ft on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4975
  • Wer: 0.9749

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 8
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 40
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
83.048 2.4752 500 48.3229 0.9459
2.1777 4.9505 1000 3.3841 0.9775
2.5735 7.4257 1500 2.1042 0.9698
5.3683 9.9010 2000 1.5244 0.9699
1.906 12.3762 2500 1.3064 0.9128
1.9468 14.8515 3000 1.3597 0.9174
1.6598 17.3267 3500 1.1801 0.9093
1.2808 19.8020 4000 1.6481 0.9181
2.0953 22.2772 4500 3.1021 0.9602
0.5282 24.7525 5000 0.5278 0.9755
7.1607 27.2277 5500 0.9557 0.9823
4.1975 29.7030 6000 13.0365 0.9301
0.5248 32.1782 6500 0.5075 0.9840
0.5065 34.6535 7000 0.5001 0.9834
0.4997 37.1287 7500 0.5032 0.9793
0.5072 39.6040 8000 0.4975 0.9749

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.2.1
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
3
Safetensors
Model size
315M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for nh0znoisung/hubert-large-timit-upsample-decoder

Finetuned
(32)
this model