nbeerbower's picture
Update README.md
ef50dca verified
---
library_name: transformers
base_model:
- nbeerbower/llama-3-sauce-v1-8B
datasets:
- ResplendentAI/NSFW_RP_Format_NoQuote
license: other
license_name: llama3
tags:
- nsfw
- not-for-all-audiences
- experimental
---
# llama-3-dragonmaid-8B
This model is based on Llama-3-8b, and is governed by [META LLAMA 3 COMMUNITY LICENSE AGREEMENT](LICENSE)
[llama-3-dragon-bophades-8B](https://huggingface.co/nbeerbower/nbeerbower/llama-3-dragon-bophades-8B) finetuned on [ResplendentAI/NSFW_RP_Format_NoQuote](https://huggingface.co/datasets/ResplendentAI/NSFW_RP_Format_NoQuote).
### Method
Finetuned using an L4 on Google Colab.
[Fine-Tune Your Own Llama 2 Model in a Colab Notebook](https://mlabonne.github.io/blog/posts/Fine_Tune_Your_Own_Llama_2_Model_in_a_Colab_Notebook.html)
### Configuration
LoRA, model, and training settings:
```python
training_arguments = TrainingArguments(
learning_rate=2e-4,
lr_scheduler_type="linear",
num_train_epochs=10,
per_device_train_batch_size=10,
per_device_eval_batch_size=10,
gradient_accumulation_steps=1,
evaluation_strategy="steps",
eval_steps=0.2,
logging_steps=1,
optim="paged_adamw_8bit",
warmup_steps=10,
report_to="wandb",
output_dir="./results",
)
trainer = SFTTrainer(
model=model,
train_dataset=dataset,
eval_dataset=dataset.select(range(0,20)),
peft_config=peft_config,
dataset_text_field="input",
max_seq_length=2048,
tokenizer=tokenizer,
args=training_arguments,
)
```