Dumplings
Collection
Qwen2.5 finetunes aiming for decensorship and improved english prose
•
3 items
•
Updated
•
1
nbeerbower/EVA-abliterated-TIES-Qwen2.5-1.5B finetuned on:
QLoRA ORPO tune with 2x RTX 3090 for 2 epochs.
# QLoRA config
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch_dtype,
bnb_4bit_use_double_quant=True,
)
# LoRA config
peft_config = LoraConfig(
r=64,
lora_alpha=64,
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM",
target_modules=['up_proj', 'down_proj', 'gate_proj', 'k_proj', 'q_proj', 'v_proj', 'o_proj']
)
# Training config
orpo_args = ORPOConfig(
run_name=new_model,
learning_rate=2e-5,
lr_scheduler_type="linear",
max_length=2048,
max_prompt_length=1024,
max_completion_length=1024,
beta=0.1,
per_device_train_batch_size=1,
per_device_eval_batch_size=1,
gradient_accumulation_steps=8,
optim="paged_adamw_8bit",
num_train_epochs=2,
evaluation_strategy="steps",
eval_steps=0.2,
logging_steps=1,
warmup_steps=10,
max_grad_norm=10,
report_to="wandb",
output_dir="./results/",
bf16=True,
)
Base model
nbeerbower/EVA-abliterated-TIES-Qwen2.5-1.5B