navidved's picture
navidved/ExHubert-fine-tuned-persian-v2
927c88e verified
metadata
library_name: transformers
license: cc-by-nc-sa-4.0
base_model: amiriparian/ExHuBERT
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: ExHubert-fine-tuned-persian_v2
    results: []

ExHubert-fine-tuned-persian_v2

This model is a fine-tuned version of amiriparian/ExHuBERT on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5637
  • Accuracy: 0.8444
  • Precision: 0.8209
  • Recall: 0.7483
  • F1: 0.7829
  • Precision Neutral: 0.8566
  • Recall Neutral: 0.9020
  • F1 Neutral: 0.8787
  • Precision Anger: 0.8209
  • Recall Anger: 0.7483
  • F1 Anger: 0.7829

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Precision Neutral Recall Neutral F1 Neutral Precision Anger Recall Anger F1 Anger
0.8717 1.0 393 0.7755 0.6454 0.5145 0.9660 0.6714 0.9569 0.4531 0.6150 0.5145 0.9660 0.6714
0.4644 2.0 786 0.4577 0.8495 0.7785 0.8367 0.8066 0.8974 0.8571 0.8768 0.7785 0.8367 0.8066
0.4535 3.0 1179 0.4818 0.8546 0.8 0.8163 0.8081 0.8884 0.8776 0.8830 0.8 0.8163 0.8081
0.4773 4.0 1572 0.5514 0.8189 0.7289 0.8231 0.7732 0.8850 0.8163 0.8493 0.7289 0.8231 0.7732
0.3337 5.0 1965 0.5680 0.8112 0.7417 0.7619 0.7517 0.8548 0.8408 0.8477 0.7417 0.7619 0.7517
0.2774 6.0 2358 0.6004 0.8367 0.8879 0.6463 0.7480 0.8175 0.9510 0.8792 0.8879 0.6463 0.7480
0.2007 7.0 2751 0.5529 0.8546 0.8629 0.7279 0.7897 0.8507 0.9306 0.8889 0.8629 0.7279 0.7897
0.2025 8.0 3144 0.5655 0.8444 0.8162 0.7551 0.7845 0.8594 0.8980 0.8782 0.8162 0.7551 0.7845
0.2583 9.0 3537 0.5635 0.8444 0.8258 0.7415 0.7814 0.8538 0.9061 0.8792 0.8258 0.7415 0.7814
0.3264 10.0 3930 0.5637 0.8444 0.8209 0.7483 0.7829 0.8566 0.9020 0.8787 0.8209 0.7483 0.7829

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0