metadata
library_name: transformers
license: cc-by-nc-sa-4.0
base_model: amiriparian/ExHuBERT
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: ExHubert-fine-tuned-persian_v2
results: []
ExHubert-fine-tuned-persian_v2
This model is a fine-tuned version of amiriparian/ExHuBERT on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5637
- Accuracy: 0.8444
- Precision: 0.8209
- Recall: 0.7483
- F1: 0.7829
- Precision Neutral: 0.8566
- Recall Neutral: 0.9020
- F1 Neutral: 0.8787
- Precision Anger: 0.8209
- Recall Anger: 0.7483
- F1 Anger: 0.7829
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Precision Neutral | Recall Neutral | F1 Neutral | Precision Anger | Recall Anger | F1 Anger |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.8717 | 1.0 | 393 | 0.7755 | 0.6454 | 0.5145 | 0.9660 | 0.6714 | 0.9569 | 0.4531 | 0.6150 | 0.5145 | 0.9660 | 0.6714 |
0.4644 | 2.0 | 786 | 0.4577 | 0.8495 | 0.7785 | 0.8367 | 0.8066 | 0.8974 | 0.8571 | 0.8768 | 0.7785 | 0.8367 | 0.8066 |
0.4535 | 3.0 | 1179 | 0.4818 | 0.8546 | 0.8 | 0.8163 | 0.8081 | 0.8884 | 0.8776 | 0.8830 | 0.8 | 0.8163 | 0.8081 |
0.4773 | 4.0 | 1572 | 0.5514 | 0.8189 | 0.7289 | 0.8231 | 0.7732 | 0.8850 | 0.8163 | 0.8493 | 0.7289 | 0.8231 | 0.7732 |
0.3337 | 5.0 | 1965 | 0.5680 | 0.8112 | 0.7417 | 0.7619 | 0.7517 | 0.8548 | 0.8408 | 0.8477 | 0.7417 | 0.7619 | 0.7517 |
0.2774 | 6.0 | 2358 | 0.6004 | 0.8367 | 0.8879 | 0.6463 | 0.7480 | 0.8175 | 0.9510 | 0.8792 | 0.8879 | 0.6463 | 0.7480 |
0.2007 | 7.0 | 2751 | 0.5529 | 0.8546 | 0.8629 | 0.7279 | 0.7897 | 0.8507 | 0.9306 | 0.8889 | 0.8629 | 0.7279 | 0.7897 |
0.2025 | 8.0 | 3144 | 0.5655 | 0.8444 | 0.8162 | 0.7551 | 0.7845 | 0.8594 | 0.8980 | 0.8782 | 0.8162 | 0.7551 | 0.7845 |
0.2583 | 9.0 | 3537 | 0.5635 | 0.8444 | 0.8258 | 0.7415 | 0.7814 | 0.8538 | 0.9061 | 0.8792 | 0.8258 | 0.7415 | 0.7814 |
0.3264 | 10.0 | 3930 | 0.5637 | 0.8444 | 0.8209 | 0.7483 | 0.7829 | 0.8566 | 0.9020 | 0.8787 | 0.8209 | 0.7483 | 0.7829 |
Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0