SetFit with BAAI/bge-base-en-v1.5

This is a SetFit model that can be used for Text Classification. This SetFit model uses BAAI/bge-base-en-v1.5 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
cybersec
  • "cracking this password?. http://postimg.org/image/mi3xit477/\nit's Gargoyle Router Management Utility\ni'm a pre-beginner in cracking, i setted this up in my router, but i don't want to press the reset button, it took me a few weeks to do it, so i don't wanna re-install the firmware, but i forgot the password.....\ni have unlimited times of enter times, it's a 192.168.2.1\nhow can i crack it? i don't think it's encrypted though..."
  • 'How can someone prevent a sybil attack when connecting through TOR?.

    As I understand it, running sybil BTC nodes through an anonymous network like TOR is much less expensive than in clearnet. This makes it possible that one could be connected to a majority of nodes controlled by the same entity, right?

    \n\n

    Is there any way to limit exposure to this when connection through TOR?

    \n\n

    ( I am asking for a friend :P )

    \n'
  • 'Added gigabit qos switch at workstation to work around 10/100 pass though in Cisco IP phone. Widows says the LAN connection is 1Gbps, but there is a cat5, not 5e going to the machine, am I really getting gigabit?. Windows 7.\nLong story short, the network connection to our PCs was running through our Cisco IP phones, which only supported 10/100. Per my IT guy, everything else on our network, the switches etc. can support gigabit, the phone is the choke point. To workaround, I got a 5 port gigabit switch, and put the phone on the high priority qos port. Under the LAN connection in control panel, it went from 100Mbps to 1Gbps.\nThe reason I am skeptical is that the ethernet cable from the switch to the PC is cat5, not 5e. My understanding is it needs to be 5e. Since there are 3 cables (wall to switch, switch to phone, switch to pc) per machine, I would rather not replace every cable on 17 machines.\nSo, if Windows says gigabit, is that all there is to it? Or should I run some type of diagnostic?\nLonger question, we have 20ish IP phones, and a server, sharing modestly sized documents, and some server-centric ERP type software. Do I even need the Gigabit speed? Some users I have switched are noticing some improvement, but we are not transferring huge files across the network regularly, so it may just seem anecdotally faster to them. How can I tell if I really need the extra bandwidth, and what I am using?\n\nI feel like a total idiot here, be gentle...\n\nThanks!'
non-cybersec
  • 'Tex-shell in AUCTeX.

    Whenever I compile a file in AUCTeX (e.g. C-c C-c and then choosing an option) , it creates a buffer tex-shell where I can see the output of the compilation command. Once the compilation finishes this shell buffer stays open. What is the right way to close it?

    \n\n

    Besides showing me the compilation output, what else can I use it for?

    \n'
  • 'Inserting a Creative Commons Licence into a LaTeX document.

    I'd like to insert a CC license on a manuscript (a book or report). I've seen the page for downloading the CC icons, and also some questions asked in the forum CC logo and Generate CC information.

    \n\n

    However, I do not get how to create the actual thing!

    \n\n

    Q: Can you please provide an example of a license info page (MWE)? That would be really helpful!

    \n'
  • "Hey Reddit! We're Tritonal, and we just released our new U&Me album. Ask us anything!!. Yooo! What's up!? It's Dave & Chad of Tritonal, and we've just released our newest album, U&ME, available everywhere now! We're here to answer all of YOUR questions. Let's get this thing started!\n\nASK US ANYTHING! <3\n\nOur new album U&Me - https://enhanced.ffm.to/umealbum\nOur tour dates - http://tritonalmusic.com/shows\n\nProof: https://i.imgur.com/6cxJ9eU.jpg"

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("naufalso/setfit-ctc-bge-base-en-v1.5")
# Run inference
preds = model("The salvation of the soul in plain English: the world revolves around me.")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 2 309.552 20280
Label Training Sample Count
non-cybersec 1000
cybersec 1000

Training Hyperparameters

  • batch_size: (32, 32)
  • num_epochs: (1, 1)
  • max_steps: -1
  • sampling_strategy: oversampling
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0000 1 0.2527 -
0.0008 50 0.2398 -
0.0016 100 0.2476 -
0.0024 150 0.2407 -
0.0032 200 0.2448 -
0.0040 250 0.241 -
0.0048 300 0.2381 -
0.0056 350 0.2345 -
0.0064 400 0.2344 -
0.0072 450 0.2284 -
0.0080 500 0.2232 -
0.0088 550 0.2167 -
0.0096 600 0.2082 -
0.0104 650 0.193 -
0.0112 700 0.163 -
0.0120 750 0.138 -
0.0128 800 0.1136 -
0.0136 850 0.0934 -
0.0144 900 0.0743 -
0.0152 950 0.0619 -
0.0160 1000 0.0455 -
0.0168 1050 0.0415 -
0.0176 1100 0.027 -
0.0184 1150 0.0276 -
0.0192 1200 0.0235 -
0.0200 1250 0.0183 -
0.0208 1300 0.0193 -
0.0216 1350 0.0161 -
0.0224 1400 0.0143 -
0.0232 1450 0.0134 -
0.0240 1500 0.0146 -
0.0248 1550 0.0152 -
0.0256 1600 0.0157 -
0.0264 1650 0.0138 -
0.0272 1700 0.0101 -
0.0280 1750 0.0089 -
0.0288 1800 0.0109 -
0.0296 1850 0.0122 -
0.0304 1900 0.0056 -
0.0312 1950 0.0094 -
0.0320 2000 0.0105 -
0.0328 2050 0.0101 -
0.0336 2100 0.0087 -
0.0344 2150 0.0089 -
0.0352 2200 0.0079 -
0.0360 2250 0.0091 -
0.0368 2300 0.0063 -
0.0376 2350 0.005 -
0.0384 2400 0.0083 -
0.0392 2450 0.0066 -
0.0400 2500 0.007 -
0.0408 2550 0.0049 -
0.0416 2600 0.0037 -
0.0424 2650 0.006 -
0.0432 2700 0.0063 -
0.0440 2750 0.0047 -
0.0448 2800 0.0062 -
0.0456 2850 0.0029 -
0.0464 2900 0.0038 -
0.0472 2950 0.0025 -
0.0480 3000 0.0021 -
0.0488 3050 0.0017 -
0.0496 3100 0.0041 -
0.0503 3150 0.0015 -
0.0511 3200 0.004 -
0.0519 3250 0.0019 -
0.0527 3300 0.005 -
0.0535 3350 0.0016 -
0.0543 3400 0.0037 -
0.0551 3450 0.0031 -
0.0559 3500 0.0024 -
0.0567 3550 0.0019 -
0.0575 3600 0.0036 -
0.0583 3650 0.0058 -
0.0591 3700 0.0024 -
0.0599 3750 0.0021 -
0.0607 3800 0.0015 -
0.0615 3850 0.0015 -
0.0623 3900 0.0016 -
0.0631 3950 0.0009 -
0.0639 4000 0.0014 -
0.0647 4050 0.0014 -
0.0655 4100 0.0021 -
0.0663 4150 0.0008 -
0.0671 4200 0.0031 -
0.0679 4250 0.0008 -
0.0687 4300 0.0025 -
0.0695 4350 0.0028 -
0.0703 4400 0.0025 -
0.0711 4450 0.0007 -
0.0719 4500 0.0018 -
0.0727 4550 0.0012 -
0.0735 4600 0.0012 -
0.0743 4650 0.0006 -
0.0751 4700 0.0006 -
0.0759 4750 0.0031 -
0.0767 4800 0.0017 -
0.0775 4850 0.0007 -
0.0783 4900 0.0011 -
0.0791 4950 0.0006 -
0.0799 5000 0.0006 -
0.0807 5050 0.0005 -
0.0815 5100 0.0005 -
0.0823 5150 0.0005 -
0.0831 5200 0.0005 -
0.0839 5250 0.0005 -
0.0847 5300 0.0005 -
0.0855 5350 0.0005 -
0.0863 5400 0.0005 -
0.0871 5450 0.0005 -
0.0879 5500 0.0004 -
0.0887 5550 0.0005 -
0.0895 5600 0.0004 -
0.0903 5650 0.0004 -
0.0911 5700 0.0004 -
0.0919 5750 0.0004 -
0.0927 5800 0.0004 -
0.0935 5850 0.0035 -
0.0943 5900 0.0112 -
0.0951 5950 0.0054 -
0.0959 6000 0.0058 -
0.0967 6050 0.0027 -
0.0975 6100 0.0051 -
0.0983 6150 0.0038 -
0.0991 6200 0.0031 -
0.0999 6250 0.0038 -
0.1007 6300 0.0021 -
0.1015 6350 0.0029 -
0.1023 6400 0.0018 -
0.1031 6450 0.0035 -
0.1039 6500 0.0017 -
0.1047 6550 0.0026 -
0.1055 6600 0.0016 -
0.1063 6650 0.0016 -
0.1071 6700 0.0004 -
0.1079 6750 0.001 -
0.1087 6800 0.0028 -
0.1095 6850 0.001 -
0.1103 6900 0.0003 -
0.1111 6950 0.001 -
0.1119 7000 0.0016 -
0.1127 7050 0.0003 -
0.1135 7100 0.0022 -
0.1143 7150 0.0022 -
0.1151 7200 0.0016 -
0.1159 7250 0.0007 -
0.1167 7300 0.0003 -
0.1175 7350 0.0006 -
0.1183 7400 0.0026 -
0.1191 7450 0.0004 -
0.1199 7500 0.0008 -
0.1207 7550 0.0004 -
0.1215 7600 0.0003 -
0.1223 7650 0.0004 -
0.1231 7700 0.0023 -
0.1239 7750 0.0004 -
0.1247 7800 0.0005 -
0.1255 7850 0.0005 -
0.1263 7900 0.0016 -
0.1271 7950 0.0005 -
0.1279 8000 0.0004 -
0.1287 8050 0.0003 -
0.1295 8100 0.0014 -
0.1303 8150 0.0052 -
0.1311 8200 0.005 -
0.1319 8250 0.0051 -
0.1327 8300 0.0009 -
0.1335 8350 0.0003 -
0.1343 8400 0.0004 -
0.1351 8450 0.0003 -
0.1359 8500 0.0003 -
0.1367 8550 0.0009 -
0.1375 8600 0.0003 -
0.1383 8650 0.0003 -
0.1391 8700 0.0003 -
0.1399 8750 0.0009 -
0.1407 8800 0.0012 -
0.1415 8850 0.0009 -
0.1423 8900 0.0003 -
0.1431 8950 0.0002 -
0.1439 9000 0.0002 -
0.1447 9050 0.0002 -
0.1455 9100 0.0002 -
0.1463 9150 0.0002 -
0.1471 9200 0.0002 -
0.1479 9250 0.0003 -
0.1487 9300 0.0002 -
0.1494 9350 0.0002 -
0.1502 9400 0.0002 -
0.1510 9450 0.0002 -
0.1518 9500 0.0002 -
0.1526 9550 0.0002 -
0.1534 9600 0.0002 -
0.1542 9650 0.0002 -
0.1550 9700 0.0002 -
0.1558 9750 0.0002 -
0.1566 9800 0.0002 -
0.1574 9850 0.0002 -
0.1582 9900 0.0002 -
0.1590 9950 0.0002 -
0.1598 10000 0.0002 -
0.1606 10050 0.0002 -
0.1614 10100 0.0002 -
0.1622 10150 0.0002 -
0.1630 10200 0.0002 -
0.1638 10250 0.0002 -
0.1646 10300 0.0002 -
0.1654 10350 0.0002 -
0.1662 10400 0.0002 -
0.1670 10450 0.0002 -
0.1678 10500 0.0002 -
0.1686 10550 0.0002 -
0.1694 10600 0.0002 -
0.1702 10650 0.0002 -
0.1710 10700 0.0002 -
0.1718 10750 0.0002 -
0.1726 10800 0.0002 -
0.1734 10850 0.0002 -
0.1742 10900 0.0002 -
0.1750 10950 0.0002 -
0.1758 11000 0.0002 -
0.1766 11050 0.0002 -
0.1774 11100 0.0002 -
0.1782 11150 0.0002 -
0.1790 11200 0.0002 -
0.1798 11250 0.0002 -
0.1806 11300 0.0002 -
0.1814 11350 0.0002 -
0.1822 11400 0.0002 -
0.1830 11450 0.0002 -
0.1838 11500 0.0002 -
0.1846 11550 0.0002 -
0.1854 11600 0.0002 -
0.1862 11650 0.0002 -
0.1870 11700 0.0002 -
0.1878 11750 0.0002 -
0.1886 11800 0.0001 -
0.1894 11850 0.0002 -
0.1902 11900 0.0002 -
0.1910 11950 0.0001 -
0.1918 12000 0.0001 -
0.1926 12050 0.0001 -
0.1934 12100 0.0001 -
0.1942 12150 0.0001 -
0.1950 12200 0.0001 -
0.1958 12250 0.0001 -
0.1966 12300 0.0001 -
0.1974 12350 0.0001 -
0.1982 12400 0.0001 -
0.1990 12450 0.0001 -
0.1998 12500 0.0001 -
0.2006 12550 0.0001 -
0.2014 12600 0.0001 -
0.2022 12650 0.0001 -
0.2030 12700 0.0001 -
0.2038 12750 0.0001 -
0.2046 12800 0.0001 -
0.2054 12850 0.0001 -
0.2062 12900 0.0001 -
0.2070 12950 0.0001 -
0.2078 13000 0.0001 -
0.2086 13050 0.0001 -
0.2094 13100 0.0001 -
0.2102 13150 0.0001 -
0.2110 13200 0.0001 -
0.2118 13250 0.0001 -
0.2126 13300 0.0001 -
0.2134 13350 0.0001 -
0.2142 13400 0.0001 -
0.2150 13450 0.0001 -
0.2158 13500 0.0001 -
0.2166 13550 0.0001 -
0.2174 13600 0.0001 -
0.2182 13650 0.0001 -
0.2190 13700 0.0001 -
0.2198 13750 0.0001 -
0.2206 13800 0.0001 -
0.2214 13850 0.0001 -
0.2222 13900 0.0001 -
0.2230 13950 0.0001 -
0.2238 14000 0.0001 -
0.2246 14050 0.0001 -
0.2254 14100 0.0001 -
0.2262 14150 0.0001 -
0.2270 14200 0.0001 -
0.2278 14250 0.0001 -
0.2286 14300 0.0001 -
0.2294 14350 0.0001 -
0.2302 14400 0.0001 -
0.2310 14450 0.0001 -
0.2318 14500 0.0001 -
0.2326 14550 0.0001 -
0.2334 14600 0.0001 -
0.2342 14650 0.0001 -
0.2350 14700 0.0001 -
0.2358 14750 0.0001 -
0.2366 14800 0.0001 -
0.2374 14850 0.0001 -
0.2382 14900 0.0001 -
0.2390 14950 0.0001 -
0.2398 15000 0.0001 -
0.2406 15050 0.0001 -
0.2414 15100 0.0001 -
0.2422 15150 0.0001 -
0.2430 15200 0.0001 -
0.2438 15250 0.0001 -
0.2446 15300 0.0001 -
0.2454 15350 0.0001 -
0.2462 15400 0.0001 -
0.2470 15450 0.0001 -
0.2478 15500 0.0001 -
0.2485 15550 0.0001 -
0.2493 15600 0.0001 -
0.2501 15650 0.0001 -
0.2509 15700 0.0001 -
0.2517 15750 0.0001 -
0.2525 15800 0.0001 -
0.2533 15850 0.0001 -
0.2541 15900 0.0001 -
0.2549 15950 0.0001 -
0.2557 16000 0.0001 -
0.2565 16050 0.0001 -
0.2573 16100 0.0001 -
0.2581 16150 0.0001 -
0.2589 16200 0.0001 -
0.2597 16250 0.0001 -
0.2605 16300 0.0001 -
0.2613 16350 0.0001 -
0.2621 16400 0.0001 -
0.2629 16450 0.0011 -
0.2637 16500 0.0011 -
0.2645 16550 0.0022 -
0.2653 16600 0.0055 -
0.2661 16650 0.0012 -
0.2669 16700 0.0023 -
0.2677 16750 0.0016 -
0.2685 16800 0.0001 -
0.2693 16850 0.0001 -
0.2701 16900 0.0001 -
0.2709 16950 0.0001 -
0.2717 17000 0.0001 -
0.2725 17050 0.0001 -
0.2733 17100 0.0001 -
0.2741 17150 0.0001 -
0.2749 17200 0.0001 -
0.2757 17250 0.0001 -
0.2765 17300 0.0001 -
0.2773 17350 0.0001 -
0.2781 17400 0.0001 -
0.2789 17450 0.0001 -
0.2797 17500 0.0001 -
0.2805 17550 0.0001 -
0.2813 17600 0.0001 -
0.2821 17650 0.0001 -
0.2829 17700 0.0001 -
0.2837 17750 0.0001 -
0.2845 17800 0.0003 -
0.2853 17850 0.0001 -
0.2861 17900 0.0001 -
0.2869 17950 0.0001 -
0.2877 18000 0.0001 -
0.2885 18050 0.0001 -
0.2893 18100 0.0001 -
0.2901 18150 0.0001 -
0.2909 18200 0.0001 -
0.2917 18250 0.0001 -
0.2925 18300 0.0001 -
0.2933 18350 0.0001 -
0.2941 18400 0.0001 -
0.2949 18450 0.0001 -
0.2957 18500 0.0001 -
0.2965 18550 0.0001 -
0.2973 18600 0.0001 -
0.2981 18650 0.0001 -
0.2989 18700 0.0001 -
0.2997 18750 0.0001 -
0.3005 18800 0.0001 -
0.3013 18850 0.0001 -
0.3021 18900 0.0001 -
0.3029 18950 0.0001 -
0.3037 19000 0.0001 -
0.3045 19050 0.0001 -
0.3053 19100 0.0001 -
0.3061 19150 0.0001 -
0.3069 19200 0.0001 -
0.3077 19250 0.0001 -
0.3085 19300 0.0001 -
0.3093 19350 0.0001 -
0.3101 19400 0.0001 -
0.3109 19450 0.0001 -
0.3117 19500 0.0001 -
0.3125 19550 0.0001 -
0.3133 19600 0.0001 -
0.3141 19650 0.0001 -
0.3149 19700 0.0001 -
0.3157 19750 0.0001 -
0.3165 19800 0.0 -
0.3173 19850 0.0001 -
0.3181 19900 0.0001 -
0.3189 19950 0.0001 -
0.3197 20000 0.0001 -
0.3205 20050 0.0001 -
0.3213 20100 0.0001 -
0.3221 20150 0.0001 -
0.3229 20200 0.0 -
0.3237 20250 0.0001 -
0.3245 20300 0.0 -
0.3253 20350 0.0001 -
0.3261 20400 0.0 -
0.3269 20450 0.0 -
0.3277 20500 0.0 -
0.3285 20550 0.0001 -
0.3293 20600 0.0 -
0.3301 20650 0.0 -
0.3309 20700 0.0 -
0.3317 20750 0.0 -
0.3325 20800 0.0 -
0.3333 20850 0.0 -
0.3341 20900 0.0 -
0.3349 20950 0.0 -
0.3357 21000 0.0 -
0.3365 21050 0.0 -
0.3373 21100 0.0 -
0.3381 21150 0.0 -
0.3389 21200 0.0 -
0.3397 21250 0.0 -
0.3405 21300 0.0 -
0.3413 21350 0.0 -
0.3421 21400 0.0 -
0.3429 21450 0.0 -
0.3437 21500 0.0 -
0.3445 21550 0.0 -
0.3453 21600 0.0 -
0.3461 21650 0.0 -
0.3469 21700 0.0 -
0.3476 21750 0.0 -
0.3484 21800 0.0 -
0.3492 21850 0.0 -
0.3500 21900 0.0 -
0.3508 21950 0.0 -
0.3516 22000 0.0 -
0.3524 22050 0.0 -
0.3532 22100 0.0 -
0.3540 22150 0.0 -
0.3548 22200 0.0 -
0.3556 22250 0.0 -
0.3564 22300 0.0 -
0.3572 22350 0.0 -
0.3580 22400 0.0 -
0.3588 22450 0.0 -
0.3596 22500 0.0 -
0.3604 22550 0.0 -
0.3612 22600 0.0 -
0.3620 22650 0.0 -
0.3628 22700 0.0 -
0.3636 22750 0.0 -
0.3644 22800 0.0 -
0.3652 22850 0.0 -
0.3660 22900 0.0 -
0.3668 22950 0.0 -
0.3676 23000 0.0 -
0.3684 23050 0.0 -
0.3692 23100 0.0 -
0.3700 23150 0.0 -
0.3708 23200 0.0 -
0.3716 23250 0.0 -
0.3724 23300 0.0 -
0.3732 23350 0.0 -
0.3740 23400 0.0 -
0.3748 23450 0.0 -
0.3756 23500 0.0 -
0.3764 23550 0.0 -
0.3772 23600 0.0 -
0.3780 23650 0.0 -
0.3788 23700 0.0 -
0.3796 23750 0.0 -
0.3804 23800 0.0 -
0.3812 23850 0.0 -
0.3820 23900 0.0 -
0.3828 23950 0.0 -
0.3836 24000 0.0 -
0.3844 24050 0.0 -
0.3852 24100 0.0 -
0.3860 24150 0.0 -
0.3868 24200 0.0 -
0.3876 24250 0.0 -
0.3884 24300 0.0 -
0.3892 24350 0.0 -
0.3900 24400 0.0 -
0.3908 24450 0.0 -
0.3916 24500 0.0 -
0.3924 24550 0.0 -
0.3932 24600 0.0 -
0.3940 24650 0.0 -
0.3948 24700 0.0 -
0.3956 24750 0.0 -
0.3964 24800 0.0 -
0.3972 24850 0.0 -
0.3980 24900 0.0 -
0.3988 24950 0.0 -
0.3996 25000 0.0 -
0.4004 25050 0.0 -
0.4012 25100 0.0 -
0.4020 25150 0.0 -
0.4028 25200 0.0 -
0.4036 25250 0.0 -
0.4044 25300 0.0 -
0.4052 25350 0.0 -
0.4060 25400 0.0 -
0.4068 25450 0.0 -
0.4076 25500 0.0 -
0.4084 25550 0.0 -
0.4092 25600 0.0 -
0.4100 25650 0.0 -
0.4108 25700 0.0 -
0.4116 25750 0.0 -
0.4124 25800 0.0 -
0.4132 25850 0.0 -
0.4140 25900 0.0 -
0.4148 25950 0.0 -
0.4156 26000 0.0 -
0.4164 26050 0.0 -
0.4172 26100 0.0 -
0.4180 26150 0.0 -
0.4188 26200 0.0 -
0.4196 26250 0.0 -
0.4204 26300 0.0 -
0.4212 26350 0.0 -
0.4220 26400 0.0 -
0.4228 26450 0.0 -
0.4236 26500 0.0 -
0.4244 26550 0.0 -
0.4252 26600 0.0 -
0.4260 26650 0.0 -
0.4268 26700 0.0 -
0.4276 26750 0.0 -
0.4284 26800 0.0 -
0.4292 26850 0.0 -
0.4300 26900 0.0 -
0.4308 26950 0.0 -
0.4316 27000 0.0 -
0.4324 27050 0.0 -
0.4332 27100 0.0 -
0.4340 27150 0.0 -
0.4348 27200 0.0 -
0.4356 27250 0.0 -
0.4364 27300 0.0 -
0.4372 27350 0.0 -
0.4380 27400 0.0 -
0.4388 27450 0.0 -
0.4396 27500 0.0 -
0.4404 27550 0.0 -
0.4412 27600 0.0 -
0.4420 27650 0.0 -
0.4428 27700 0.0 -
0.4436 27750 0.0 -
0.4444 27800 0.0 -
0.4452 27850 0.0 -
0.4460 27900 0.0 -
0.4467 27950 0.0 -
0.4475 28000 0.0 -
0.4483 28050 0.0 -
0.4491 28100 0.0 -
0.4499 28150 0.0 -
0.4507 28200 0.0 -
0.4515 28250 0.0 -
0.4523 28300 0.0 -
0.4531 28350 0.0 -
0.4539 28400 0.0 -
0.4547 28450 0.0 -
0.4555 28500 0.0 -
0.4563 28550 0.0 -
0.4571 28600 0.0 -
0.4579 28650 0.0 -
0.4587 28700 0.0 -
0.4595 28750 0.0 -
0.4603 28800 0.0 -
0.4611 28850 0.0 -
0.4619 28900 0.0 -
0.4627 28950 0.0 -
0.4635 29000 0.0 -
0.4643 29050 0.0 -
0.4651 29100 0.0 -
0.4659 29150 0.0 -
0.4667 29200 0.0 -
0.4675 29250 0.0 -
0.4683 29300 0.0 -
0.4691 29350 0.0003 -
0.4699 29400 0.0 -
0.4707 29450 0.0005 -
0.4715 29500 0.0 -
0.4723 29550 0.0 -
0.4731 29600 0.0 -
0.4739 29650 0.0001 -
0.4747 29700 0.0 -
0.4755 29750 0.0 -
0.4763 29800 0.0 -
0.4771 29850 0.0 -
0.4779 29900 0.0 -
0.4787 29950 0.0 -
0.4795 30000 0.0 -
0.4803 30050 0.0 -
0.4811 30100 0.0 -
0.4819 30150 0.0 -
0.4827 30200 0.0 -
0.4835 30250 0.0 -
0.4843 30300 0.0 -
0.4851 30350 0.0 -
0.4859 30400 0.0 -
0.4867 30450 0.0 -
0.4875 30500 0.0 -
0.4883 30550 0.0 -
0.4891 30600 0.0 -
0.4899 30650 0.0 -
0.4907 30700 0.0 -
0.4915 30750 0.0 -
0.4923 30800 0.0 -
0.4931 30850 0.0 -
0.4939 30900 0.0 -
0.4947 30950 0.0 -
0.4955 31000 0.0 -
0.4963 31050 0.0 -
0.4971 31100 0.0 -
0.4979 31150 0.0 -
0.4987 31200 0.0 -
0.4995 31250 0.0 -
0.5003 31300 0.0 -
0.5011 31350 0.0 -
0.5019 31400 0.0 -
0.5027 31450 0.0 -
0.5035 31500 0.0 -
0.5043 31550 0.0043 -
0.5051 31600 0.0008 -
0.5059 31650 0.0 -
0.5067 31700 0.0 -
0.5075 31750 0.0 -
0.5083 31800 0.0 -
0.5091 31850 0.0 -
0.5099 31900 0.0 -
0.5107 31950 0.0 -
0.5115 32000 0.0 -
0.5123 32050 0.0 -
0.5131 32100 0.0 -
0.5139 32150 0.0 -
0.5147 32200 0.0 -
0.5155 32250 0.0 -
0.5163 32300 0.0 -
0.5171 32350 0.0 -
0.5179 32400 0.0 -
0.5187 32450 0.0 -
0.5195 32500 0.0 -
0.5203 32550 0.0 -
0.5211 32600 0.0 -
0.5219 32650 0.0 -
0.5227 32700 0.0 -
0.5235 32750 0.0 -
0.5243 32800 0.0 -
0.5251 32850 0.0 -
0.5259 32900 0.0 -
0.5267 32950 0.0 -
0.5275 33000 0.0 -
0.5283 33050 0.0 -
0.5291 33100 0.0 -
0.5299 33150 0.0 -
0.5307 33200 0.0 -
0.5315 33250 0.0 -
0.5323 33300 0.0 -
0.5331 33350 0.0 -
0.5339 33400 0.0 -
0.5347 33450 0.0 -
0.5355 33500 0.0 -
0.5363 33550 0.0 -
0.5371 33600 0.0 -
0.5379 33650 0.0 -
0.5387 33700 0.0 -
0.5395 33750 0.0 -
0.5403 33800 0.0 -
0.5411 33850 0.0 -
0.5419 33900 0.0 -
0.5427 33950 0.0 -
0.5435 34000 0.0 -
0.5443 34050 0.0 -
0.5451 34100 0.0 -
0.5458 34150 0.0 -
0.5466 34200 0.0 -
0.5474 34250 0.0 -
0.5482 34300 0.0 -
0.5490 34350 0.0 -
0.5498 34400 0.0 -
0.5506 34450 0.0 -
0.5514 34500 0.0 -
0.5522 34550 0.0 -
0.5530 34600 0.0 -
0.5538 34650 0.0 -
0.5546 34700 0.0 -
0.5554 34750 0.0 -
0.5562 34800 0.0 -
0.5570 34850 0.0 -
0.5578 34900 0.0 -
0.5586 34950 0.0 -
0.5594 35000 0.0 -
0.5602 35050 0.0 -
0.5610 35100 0.0 -
0.5618 35150 0.0 -
0.5626 35200 0.0 -
0.5634 35250 0.0 -
0.5642 35300 0.0 -
0.5650 35350 0.0 -
0.5658 35400 0.0 -
0.5666 35450 0.0 -
0.5674 35500 0.0 -
0.5682 35550 0.0 -
0.5690 35600 0.0 -
0.5698 35650 0.0 -
0.5706 35700 0.0 -
0.5714 35750 0.0 -
0.5722 35800 0.0 -
0.5730 35850 0.0 -
0.5738 35900 0.0 -
0.5746 35950 0.0 -
0.5754 36000 0.0 -
0.5762 36050 0.0 -
0.5770 36100 0.0 -
0.5778 36150 0.0 -
0.5786 36200 0.0 -
0.5794 36250 0.0 -
0.5802 36300 0.0 -
0.5810 36350 0.0 -
0.5818 36400 0.0 -
0.5826 36450 0.0 -
0.5834 36500 0.0 -
0.5842 36550 0.0 -
0.5850 36600 0.0 -
0.5858 36650 0.0 -
0.5866 36700 0.0 -
0.5874 36750 0.0 -
0.5882 36800 0.0 -
0.5890 36850 0.0 -
0.5898 36900 0.0 -
0.5906 36950 0.0 -
0.5914 37000 0.0 -
0.5922 37050 0.0 -
0.5930 37100 0.0 -
0.5938 37150 0.0 -
0.5946 37200 0.0 -
0.5954 37250 0.0 -
0.5962 37300 0.0 -
0.5970 37350 0.0 -
0.5978 37400 0.0 -
0.5986 37450 0.0 -
0.5994 37500 0.0 -
0.6002 37550 0.0 -
0.6010 37600 0.0 -
0.6018 37650 0.0 -
0.6026 37700 0.0 -
0.6034 37750 0.0 -
0.6042 37800 0.0 -
0.6050 37850 0.0 -
0.6058 37900 0.0 -
0.6066 37950 0.0 -
0.6074 38000 0.0 -
0.6082 38050 0.0 -
0.6090 38100 0.0 -
0.6098 38150 0.0 -
0.6106 38200 0.0 -
0.6114 38250 0.0 -
0.6122 38300 0.0 -
0.6130 38350 0.0 -
0.6138 38400 0.0 -
0.6146 38450 0.0 -
0.6154 38500 0.0 -
0.6162 38550 0.0 -
0.6170 38600 0.0 -
0.6178 38650 0.0 -
0.6186 38700 0.0 -
0.6194 38750 0.0 -
0.6202 38800 0.0 -
0.6210 38850 0.0 -
0.6218 38900 0.0 -
0.6226 38950 0.0 -
0.6234 39000 0.0 -
0.6242 39050 0.0 -
0.6250 39100 0.0 -
0.6258 39150 0.0 -
0.6266 39200 0.0 -
0.6274 39250 0.0006 -
0.6282 39300 0.0 -
0.6290 39350 0.0022 -
0.6298 39400 0.0 -
0.6306 39450 0.0 -
0.6314 39500 0.0 -
0.6322 39550 0.0 -
0.6330 39600 0.0 -
0.6338 39650 0.0 -
0.6346 39700 0.0 -
0.6354 39750 0.0 -
0.6362 39800 0.0 -
0.6370 39850 0.0 -
0.6378 39900 0.0 -
0.6386 39950 0.0 -
0.6394 40000 0.0 -
0.6402 40050 0.0 -
0.6410 40100 0.0 -
0.6418 40150 0.0 -
0.6426 40200 0.0 -
0.6434 40250 0.0 -
0.6442 40300 0.0 -
0.6449 40350 0.0 -
0.6457 40400 0.0 -
0.6465 40450 0.0 -
0.6473 40500 0.0 -
0.6481 40550 0.0 -
0.6489 40600 0.0 -
0.6497 40650 0.0 -
0.6505 40700 0.0 -
0.6513 40750 0.0 -
0.6521 40800 0.0 -
0.6529 40850 0.0 -
0.6537 40900 0.0 -
0.6545 40950 0.0 -
0.6553 41000 0.0 -
0.6561 41050 0.0 -
0.6569 41100 0.0 -
0.6577 41150 0.0 -
0.6585 41200 0.0 -
0.6593 41250 0.0 -
0.6601 41300 0.0 -
0.6609 41350 0.0 -
0.6617 41400 0.0 -
0.6625 41450 0.0 -
0.6633 41500 0.0 -
0.6641 41550 0.0 -
0.6649 41600 0.0 -
0.6657 41650 0.0 -
0.6665 41700 0.0 -
0.6673 41750 0.0 -
0.6681 41800 0.0 -
0.6689 41850 0.0 -
0.6697 41900 0.0 -
0.6705 41950 0.0 -
0.6713 42000 0.0 -
0.6721 42050 0.0 -
0.6729 42100 0.0 -
0.6737 42150 0.0 -
0.6745 42200 0.0 -
0.6753 42250 0.0 -
0.6761 42300 0.0 -
0.6769 42350 0.0 -
0.6777 42400 0.0 -
0.6785 42450 0.0 -
0.6793 42500 0.0 -
0.6801 42550 0.0 -
0.6809 42600 0.0 -
0.6817 42650 0.0 -
0.6825 42700 0.0 -
0.6833 42750 0.0 -
0.6841 42800 0.0 -
0.6849 42850 0.0 -
0.6857 42900 0.0 -
0.6865 42950 0.0 -
0.6873 43000 0.0 -
0.6881 43050 0.0 -
0.6889 43100 0.0 -
0.6897 43150 0.0 -
0.6905 43200 0.0 -
0.6913 43250 0.0 -
0.6921 43300 0.0 -
0.6929 43350 0.0 -
0.6937 43400 0.0 -
0.6945 43450 0.0 -
0.6953 43500 0.0 -
0.6961 43550 0.0 -
0.6969 43600 0.0 -
0.6977 43650 0.0 -
0.6985 43700 0.0 -
0.6993 43750 0.0 -
0.7001 43800 0.0 -
0.7009 43850 0.0 -
0.7017 43900 0.0 -
0.7025 43950 0.0 -
0.7033 44000 0.0 -
0.7041 44050 0.0 -
0.7049 44100 0.0 -
0.7057 44150 0.0 -
0.7065 44200 0.0 -
0.7073 44250 0.0 -
0.7081 44300 0.0 -
0.7089 44350 0.0 -
0.7097 44400 0.0 -
0.7105 44450 0.0 -
0.7113 44500 0.0 -
0.7121 44550 0.0 -
0.7129 44600 0.0 -
0.7137 44650 0.0 -
0.7145 44700 0.0 -
0.7153 44750 0.0 -
0.7161 44800 0.0 -
0.7169 44850 0.0 -
0.7177 44900 0.0 -
0.7185 44950 0.0 -
0.7193 45000 0.0 -
0.7201 45050 0.0 -
0.7209 45100 0.0 -
0.7217 45150 0.0 -
0.7225 45200 0.0 -
0.7233 45250 0.0 -
0.7241 45300 0.0 -
0.7249 45350 0.0 -
0.7257 45400 0.0 -
0.7265 45450 0.0 -
0.7273 45500 0.0 -
0.7281 45550 0.0 -
0.7289 45600 0.0 -
0.7297 45650 0.0001 -
0.7305 45700 0.0 -
0.7313 45750 0.0 -
0.7321 45800 0.0 -
0.7329 45850 0.0 -
0.7337 45900 0.0 -
0.7345 45950 0.0 -
0.7353 46000 0.0 -
0.7361 46050 0.0 -
0.7369 46100 0.0 -
0.7377 46150 0.0 -
0.7385 46200 0.0 -
0.7393 46250 0.0 -
0.7401 46300 0.0 -
0.7409 46350 0.0 -
0.7417 46400 0.0 -
0.7425 46450 0.0 -
0.7433 46500 0.0 -
0.7440 46550 0.0 -
0.7448 46600 0.0 -
0.7456 46650 0.0 -
0.7464 46700 0.0 -
0.7472 46750 0.0 -
0.7480 46800 0.0 -
0.7488 46850 0.0 -
0.7496 46900 0.0 -
0.7504 46950 0.0 -
0.7512 47000 0.0 -
0.7520 47050 0.0 -
0.7528 47100 0.0 -
0.7536 47150 0.0 -
0.7544 47200 0.0 -
0.7552 47250 0.0 -
0.7560 47300 0.0 -
0.7568 47350 0.0 -
0.7576 47400 0.0 -
0.7584 47450 0.0 -
0.7592 47500 0.0 -
0.7600 47550 0.0 -
0.7608 47600 0.0 -
0.7616 47650 0.0 -
0.7624 47700 0.0 -
0.7632 47750 0.0 -
0.7640 47800 0.0 -
0.7648 47850 0.0 -
0.7656 47900 0.0 -
0.7664 47950 0.0 -
0.7672 48000 0.0 -
0.7680 48050 0.0 -
0.7688 48100 0.0 -
0.7696 48150 0.0 -
0.7704 48200 0.0 -
0.7712 48250 0.0 -
0.7720 48300 0.0 -
0.7728 48350 0.0 -
0.7736 48400 0.0 -
0.7744 48450 0.0 -
0.7752 48500 0.0 -
0.7760 48550 0.0 -
0.7768 48600 0.0 -
0.7776 48650 0.0 -
0.7784 48700 0.0 -
0.7792 48750 0.0 -
0.7800 48800 0.0 -
0.7808 48850 0.0 -
0.7816 48900 0.0 -
0.7824 48950 0.0 -
0.7832 49000 0.0 -
0.7840 49050 0.0 -
0.7848 49100 0.0 -
0.7856 49150 0.0 -
0.7864 49200 0.0 -
0.7872 49250 0.0 -
0.7880 49300 0.0 -
0.7888 49350 0.0 -
0.7896 49400 0.0 -
0.7904 49450 0.0 -
0.7912 49500 0.0 -
0.7920 49550 0.0 -
0.7928 49600 0.0 -
0.7936 49650 0.0 -
0.7944 49700 0.0 -
0.7952 49750 0.0 -
0.7960 49800 0.0 -
0.7968 49850 0.0 -
0.7976 49900 0.0 -
0.7984 49950 0.0 -
0.7992 50000 0.0 -
0.8000 50050 0.0 -
0.8008 50100 0.0 -
0.8016 50150 0.0 -
0.8024 50200 0.0 -
0.8032 50250 0.0 -
0.8040 50300 0.0 -
0.8048 50350 0.0 -
0.8056 50400 0.0 -
0.8064 50450 0.0 -
0.8072 50500 0.0 -
0.8080 50550 0.0 -
0.8088 50600 0.0 -
0.8096 50650 0.0 -
0.8104 50700 0.0 -
0.8112 50750 0.0 -
0.8120 50800 0.0 -
0.8128 50850 0.0 -
0.8136 50900 0.0 -
0.8144 50950 0.0 -
0.8152 51000 0.0 -
0.8160 51050 0.0 -
0.8168 51100 0.0 -
0.8176 51150 0.0 -
0.8184 51200 0.0 -
0.8192 51250 0.0 -
0.8200 51300 0.0 -
0.8208 51350 0.0 -
0.8216 51400 0.0 -
0.8224 51450 0.0 -
0.8232 51500 0.0 -
0.8240 51550 0.0 -
0.8248 51600 0.0 -
0.8256 51650 0.0 -
0.8264 51700 0.0 -
0.8272 51750 0.0 -
0.8280 51800 0.0 -
0.8288 51850 0.0 -
0.8296 51900 0.0 -
0.8304 51950 0.0 -
0.8312 52000 0.0 -
0.8320 52050 0.0 -
0.8328 52100 0.0 -
0.8336 52150 0.0 -
0.8344 52200 0.0 -
0.8352 52250 0.0 -
0.8360 52300 0.0 -
0.8368 52350 0.0 -
0.8376 52400 0.0 -
0.8384 52450 0.0 -
0.8392 52500 0.0 -
0.8400 52550 0.0 -
0.8408 52600 0.0 -
0.8416 52650 0.0 -
0.8424 52700 0.0 -
0.8432 52750 0.0 -
0.8439 52800 0.0 -
0.8447 52850 0.0 -
0.8455 52900 0.0 -
0.8463 52950 0.0 -
0.8471 53000 0.0 -
0.8479 53050 0.0 -
0.8487 53100 0.0 -
0.8495 53150 0.0 -
0.8503 53200 0.0 -
0.8511 53250 0.0 -
0.8519 53300 0.0 -
0.8527 53350 0.0 -
0.8535 53400 0.0 -
0.8543 53450 0.0 -
0.8551 53500 0.0 -
0.8559 53550 0.0 -
0.8567 53600 0.0 -
0.8575 53650 0.0 -
0.8583 53700 0.0 -
0.8591 53750 0.0 -
0.8599 53800 0.0 -
0.8607 53850 0.0 -
0.8615 53900 0.0 -
0.8623 53950 0.0 -
0.8631 54000 0.0 -
0.8639 54050 0.0 -
0.8647 54100 0.0 -
0.8655 54150 0.0 -
0.8663 54200 0.0 -
0.8671 54250 0.0 -
0.8679 54300 0.0 -
0.8687 54350 0.0 -
0.8695 54400 0.0 -
0.8703 54450 0.0 -
0.8711 54500 0.0 -
0.8719 54550 0.0 -
0.8727 54600 0.0 -
0.8735 54650 0.0 -
0.8743 54700 0.0 -
0.8751 54750 0.0 -
0.8759 54800 0.0 -
0.8767 54850 0.0 -
0.8775 54900 0.0 -
0.8783 54950 0.0 -
0.8791 55000 0.0 -
0.8799 55050 0.0 -
0.8807 55100 0.0 -
0.8815 55150 0.0 -
0.8823 55200 0.0 -
0.8831 55250 0.0 -
0.8839 55300 0.0 -
0.8847 55350 0.0 -
0.8855 55400 0.0 -
0.8863 55450 0.0 -
0.8871 55500 0.0 -
0.8879 55550 0.0 -
0.8887 55600 0.0004 -
0.8895 55650 0.0 -
0.8903 55700 0.0 -
0.8911 55750 0.0 -
0.8919 55800 0.0 -
0.8927 55850 0.0 -
0.8935 55900 0.0 -
0.8943 55950 0.0 -
0.8951 56000 0.0 -
0.8959 56050 0.0 -
0.8967 56100 0.0 -
0.8975 56150 0.0 -
0.8983 56200 0.0 -
0.8991 56250 0.0 -
0.8999 56300 0.0 -
0.9007 56350 0.0 -
0.9015 56400 0.0 -
0.9023 56450 0.0 -
0.9031 56500 0.0 -
0.9039 56550 0.0 -
0.9047 56600 0.0 -
0.9055 56650 0.0 -
0.9063 56700 0.0 -
0.9071 56750 0.0 -
0.9079 56800 0.0 -
0.9087 56850 0.0 -
0.9095 56900 0.0 -
0.9103 56950 0.0 -
0.9111 57000 0.0 -
0.9119 57050 0.0 -
0.9127 57100 0.0 -
0.9135 57150 0.0 -
0.9143 57200 0.0 -
0.9151 57250 0.0 -
0.9159 57300 0.0 -
0.9167 57350 0.0 -
0.9175 57400 0.0 -
0.9183 57450 0.0 -
0.9191 57500 0.0 -
0.9199 57550 0.0 -
0.9207 57600 0.0 -
0.9215 57650 0.0 -
0.9223 57700 0.0 -
0.9231 57750 0.0 -
0.9239 57800 0.0 -
0.9247 57850 0.0 -
0.9255 57900 0.0 -
0.9263 57950 0.0 -
0.9271 58000 0.0 -
0.9279 58050 0.0 -
0.9287 58100 0.0 -
0.9295 58150 0.0 -
0.9303 58200 0.0 -
0.9311 58250 0.0 -
0.9319 58300 0.0 -
0.9327 58350 0.0 -
0.9335 58400 0.0 -
0.9343 58450 0.0 -
0.9351 58500 0.0 -
0.9359 58550 0.0 -
0.9367 58600 0.0 -
0.9375 58650 0.0 -
0.9383 58700 0.0 -
0.9391 58750 0.0 -
0.9399 58800 0.0 -
0.9407 58850 0.0 -
0.9415 58900 0.0 -
0.9423 58950 0.0 -
0.9430 59000 0.0 -
0.9438 59050 0.0 -
0.9446 59100 0.0 -
0.9454 59150 0.0 -
0.9462 59200 0.0 -
0.9470 59250 0.0 -
0.9478 59300 0.0 -
0.9486 59350 0.0 -
0.9494 59400 0.0 -
0.9502 59450 0.0 -
0.9510 59500 0.0 -
0.9518 59550 0.0 -
0.9526 59600 0.0 -
0.9534 59650 0.0 -
0.9542 59700 0.0 -
0.9550 59750 0.0 -
0.9558 59800 0.0 -
0.9566 59850 0.0 -
0.9574 59900 0.0 -
0.9582 59950 0.0 -
0.9590 60000 0.0 -
0.9598 60050 0.0 -
0.9606 60100 0.0 -
0.9614 60150 0.0 -
0.9622 60200 0.0 -
0.9630 60250 0.0 -
0.9638 60300 0.0 -
0.9646 60350 0.0 -
0.9654 60400 0.0 -
0.9662 60450 0.0 -
0.9670 60500 0.0 -
0.9678 60550 0.0 -
0.9686 60600 0.0 -
0.9694 60650 0.0 -
0.9702 60700 0.0 -
0.9710 60750 0.0 -
0.9718 60800 0.0 -
0.9726 60850 0.0 -
0.9734 60900 0.0 -
0.9742 60950 0.0 -
0.9750 61000 0.0 -
0.9758 61050 0.0 -
0.9766 61100 0.0 -
0.9774 61150 0.0 -
0.9782 61200 0.0 -
0.9790 61250 0.0 -
0.9798 61300 0.0 -
0.9806 61350 0.0 -
0.9814 61400 0.0 -
0.9822 61450 0.0 -
0.9830 61500 0.0 -
0.9838 61550 0.0 -
0.9846 61600 0.0 -
0.9854 61650 0.0 -
0.9862 61700 0.0 -
0.9870 61750 0.0 -
0.9878 61800 0.0 -
0.9886 61850 0.0 -
0.9894 61900 0.0 -
0.9902 61950 0.0 -
0.9910 62000 0.0 -
0.9918 62050 0.0 -
0.9926 62100 0.0 -
0.9934 62150 0.0 -
0.9942 62200 0.0 -
0.9950 62250 0.0 -
0.9958 62300 0.0 -
0.9966 62350 0.0 -
0.9974 62400 0.0 -
0.9982 62450 0.0 -
0.9990 62500 0.0 -
0.9998 62550 0.0 -
1.0 62563 - 0.0913

Framework Versions

  • Python: 3.12.7
  • SetFit: 1.1.0
  • Sentence Transformers: 3.3.1
  • Transformers: 4.47.0
  • PyTorch: 2.5.1+cu124
  • Datasets: 3.1.0
  • Tokenizers: 0.21.0

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
2
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for naufalso/setfit-ctc-bge-base-en-v1.5

Finetuned
(310)
this model