rtdetr-r50-cppe5-finetune

This model is a fine-tuned version of PekingU/rtdetr_r50vd_coco_o365 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 10.2928
  • Map: 0.5304
  • Map 50: 0.7969
  • Map 75: 0.5535
  • Map Small: 0.5383
  • Map Medium: 0.49
  • Map Large: 0.6862
  • Mar 1: 0.3948
  • Mar 10: 0.6923
  • Mar 100: 0.721
  • Mar Small: 0.6578
  • Mar Medium: 0.633
  • Mar Large: 0.8541
  • Map Coverall: 0.5634
  • Mar 100 Coverall: 0.8231
  • Map Face Shield: 0.5349
  • Mar 100 Face Shield: 0.7765
  • Map Gloves: 0.5269
  • Mar 100 Gloves: 0.6169
  • Map Goggles: 0.4186
  • Mar 100 Goggles: 0.6414
  • Map Mask: 0.6082
  • Mar 100 Mask: 0.7471

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 300
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Map Map 50 Map 75 Map Small Map Medium Map Large Mar 1 Mar 10 Mar 100 Mar Small Mar Medium Mar Large Map Coverall Mar 100 Coverall Map Face Shield Mar 100 Face Shield Map Gloves Mar 100 Gloves Map Goggles Mar 100 Goggles Map Mask Mar 100 Mask
No log 1.0 107 38.7162 0.0281 0.0511 0.0258 0.0002 0.0185 0.0643 0.0476 0.113 0.1361 0.0087 0.0487 0.2792 0.0789 0.4432 0.0001 0.0228 0.0004 0.0237 0.0152 0.0692 0.0459 0.1218
No log 2.0 214 18.9832 0.0761 0.1526 0.0644 0.0353 0.0654 0.2102 0.1353 0.3126 0.3759 0.1266 0.3259 0.6436 0.1091 0.6194 0.0156 0.3266 0.0341 0.242 0.0191 0.2846 0.2023 0.4071
No log 3.0 321 13.6077 0.1752 0.336 0.1649 0.1135 0.1322 0.3377 0.2245 0.4264 0.4943 0.3222 0.4179 0.6847 0.2821 0.6622 0.0584 0.5165 0.1717 0.4232 0.054 0.3523 0.3099 0.5173
No log 4.0 428 13.1560 0.2263 0.4207 0.2104 0.123 0.1605 0.3983 0.2559 0.4724 0.5286 0.3789 0.4497 0.7202 0.4114 0.6941 0.0924 0.5797 0.1747 0.4004 0.1153 0.4169 0.3378 0.5516
36.8374 5.0 535 12.6611 0.2505 0.4767 0.2384 0.1732 0.1978 0.4396 0.2831 0.4849 0.5407 0.4167 0.4822 0.6991 0.3467 0.691 0.1534 0.5886 0.2309 0.4187 0.1644 0.4277 0.3568 0.5773
36.8374 6.0 642 12.5659 0.2576 0.4946 0.2407 0.2101 0.2032 0.4593 0.2874 0.4959 0.5556 0.4407 0.4877 0.7199 0.3378 0.6973 0.1598 0.5987 0.2355 0.4237 0.2048 0.4785 0.3499 0.58
36.8374 7.0 749 12.4556 0.2747 0.5177 0.2548 0.2354 0.2181 0.4835 0.2967 0.4947 0.5556 0.441 0.4979 0.7231 0.3715 0.6995 0.1808 0.5861 0.2433 0.4295 0.2428 0.4769 0.3353 0.5858
36.8374 8.0 856 12.2225 0.3073 0.5745 0.2947 0.2395 0.2472 0.5148 0.3079 0.5121 0.5598 0.4353 0.491 0.726 0.4049 0.7005 0.2623 0.5924 0.2578 0.4308 0.2615 0.4923 0.3501 0.5831
36.8374 9.0 963 12.1380 0.3083 0.5642 0.3073 0.2344 0.2466 0.5222 0.3045 0.5154 0.5556 0.4475 0.4803 0.7161 0.4156 0.7005 0.2392 0.5861 0.2685 0.4366 0.2581 0.4708 0.3602 0.584
14.6693 10.0 1070 12.2646 0.3089 0.5749 0.2984 0.2304 0.257 0.519 0.3092 0.5064 0.5535 0.4401 0.4906 0.7031 0.4125 0.7009 0.2577 0.5861 0.2494 0.4295 0.2601 0.4585 0.3649 0.5924

Framework versions

  • Transformers 4.54.0.dev0
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.2
Downloads last month
8
Safetensors
Model size
42.9M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for nasiraziz321/rtdetr-r50-cppe5-finetune

Finetuned
(20)
this model