rtdetr-r50-cppe5-finetune
This model is a fine-tuned version of PekingU/rtdetr_r50vd_coco_o365 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 10.2928
- Map: 0.5304
- Map 50: 0.7969
- Map 75: 0.5535
- Map Small: 0.5383
- Map Medium: 0.49
- Map Large: 0.6862
- Mar 1: 0.3948
- Mar 10: 0.6923
- Mar 100: 0.721
- Mar Small: 0.6578
- Mar Medium: 0.633
- Mar Large: 0.8541
- Map Coverall: 0.5634
- Mar 100 Coverall: 0.8231
- Map Face Shield: 0.5349
- Mar 100 Face Shield: 0.7765
- Map Gloves: 0.5269
- Mar 100 Gloves: 0.6169
- Map Goggles: 0.4186
- Mar 100 Goggles: 0.6414
- Map Mask: 0.6082
- Mar 100 Mask: 0.7471
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 300
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1 | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Coverall | Mar 100 Coverall | Map Face Shield | Mar 100 Face Shield | Map Gloves | Mar 100 Gloves | Map Goggles | Mar 100 Goggles | Map Mask | Mar 100 Mask |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 107 | 38.7162 | 0.0281 | 0.0511 | 0.0258 | 0.0002 | 0.0185 | 0.0643 | 0.0476 | 0.113 | 0.1361 | 0.0087 | 0.0487 | 0.2792 | 0.0789 | 0.4432 | 0.0001 | 0.0228 | 0.0004 | 0.0237 | 0.0152 | 0.0692 | 0.0459 | 0.1218 |
No log | 2.0 | 214 | 18.9832 | 0.0761 | 0.1526 | 0.0644 | 0.0353 | 0.0654 | 0.2102 | 0.1353 | 0.3126 | 0.3759 | 0.1266 | 0.3259 | 0.6436 | 0.1091 | 0.6194 | 0.0156 | 0.3266 | 0.0341 | 0.242 | 0.0191 | 0.2846 | 0.2023 | 0.4071 |
No log | 3.0 | 321 | 13.6077 | 0.1752 | 0.336 | 0.1649 | 0.1135 | 0.1322 | 0.3377 | 0.2245 | 0.4264 | 0.4943 | 0.3222 | 0.4179 | 0.6847 | 0.2821 | 0.6622 | 0.0584 | 0.5165 | 0.1717 | 0.4232 | 0.054 | 0.3523 | 0.3099 | 0.5173 |
No log | 4.0 | 428 | 13.1560 | 0.2263 | 0.4207 | 0.2104 | 0.123 | 0.1605 | 0.3983 | 0.2559 | 0.4724 | 0.5286 | 0.3789 | 0.4497 | 0.7202 | 0.4114 | 0.6941 | 0.0924 | 0.5797 | 0.1747 | 0.4004 | 0.1153 | 0.4169 | 0.3378 | 0.5516 |
36.8374 | 5.0 | 535 | 12.6611 | 0.2505 | 0.4767 | 0.2384 | 0.1732 | 0.1978 | 0.4396 | 0.2831 | 0.4849 | 0.5407 | 0.4167 | 0.4822 | 0.6991 | 0.3467 | 0.691 | 0.1534 | 0.5886 | 0.2309 | 0.4187 | 0.1644 | 0.4277 | 0.3568 | 0.5773 |
36.8374 | 6.0 | 642 | 12.5659 | 0.2576 | 0.4946 | 0.2407 | 0.2101 | 0.2032 | 0.4593 | 0.2874 | 0.4959 | 0.5556 | 0.4407 | 0.4877 | 0.7199 | 0.3378 | 0.6973 | 0.1598 | 0.5987 | 0.2355 | 0.4237 | 0.2048 | 0.4785 | 0.3499 | 0.58 |
36.8374 | 7.0 | 749 | 12.4556 | 0.2747 | 0.5177 | 0.2548 | 0.2354 | 0.2181 | 0.4835 | 0.2967 | 0.4947 | 0.5556 | 0.441 | 0.4979 | 0.7231 | 0.3715 | 0.6995 | 0.1808 | 0.5861 | 0.2433 | 0.4295 | 0.2428 | 0.4769 | 0.3353 | 0.5858 |
36.8374 | 8.0 | 856 | 12.2225 | 0.3073 | 0.5745 | 0.2947 | 0.2395 | 0.2472 | 0.5148 | 0.3079 | 0.5121 | 0.5598 | 0.4353 | 0.491 | 0.726 | 0.4049 | 0.7005 | 0.2623 | 0.5924 | 0.2578 | 0.4308 | 0.2615 | 0.4923 | 0.3501 | 0.5831 |
36.8374 | 9.0 | 963 | 12.1380 | 0.3083 | 0.5642 | 0.3073 | 0.2344 | 0.2466 | 0.5222 | 0.3045 | 0.5154 | 0.5556 | 0.4475 | 0.4803 | 0.7161 | 0.4156 | 0.7005 | 0.2392 | 0.5861 | 0.2685 | 0.4366 | 0.2581 | 0.4708 | 0.3602 | 0.584 |
14.6693 | 10.0 | 1070 | 12.2646 | 0.3089 | 0.5749 | 0.2984 | 0.2304 | 0.257 | 0.519 | 0.3092 | 0.5064 | 0.5535 | 0.4401 | 0.4906 | 0.7031 | 0.4125 | 0.7009 | 0.2577 | 0.5861 | 0.2494 | 0.4295 | 0.2601 | 0.4585 | 0.3649 | 0.5924 |
Framework versions
- Transformers 4.54.0.dev0
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.2
- Downloads last month
- 8
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for nasiraziz321/rtdetr-r50-cppe5-finetune
Base model
PekingU/rtdetr_r50vd_coco_o365