rtdetr-r50-bench-finetune
This model is a fine-tuned version of PekingU/rtdetr_r50vd_coco_o365 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 15.1486
- Map: 0.217
- Map 50: 0.3852
- Map 75: 0.1895
- Map Small: 0.206
- Map Medium: 0.2572
- Map Large: 0.0515
- Mar 1: 0.2172
- Mar 10: 0.3591
- Mar 100: 0.3796
- Mar Small: 0.3184
- Mar Medium: 0.4616
- Mar Large: 0.05
- Map Elbows-shoulders-bar-athlete: -1.0
- Mar 100 Elbows-shoulders-bar-athlete: -1.0
- Map Barbell: 0.1248
- Mar 100 Barbell: 0.305
- Map Benchpresschest: -1.0
- Mar 100 Benchpresschest: -1.0
- Map Benchpressshoulder: 0.0
- Mar 100 Benchpressshoulder: 0.0
- Map Elbow: 0.01
- Mar 100 Elbow: 0.3238
- Map Hand: 0.3141
- Mar 100 Hand: 0.5248
- Map Head: 0.636
- Mar 100 Head: 0.7447
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 300
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1 | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Elbows-shoulders-bar-athlete | Mar 100 Elbows-shoulders-bar-athlete | Map Barbell | Mar 100 Barbell | Map Benchpresschest | Mar 100 Benchpresschest | Map Benchpressshoulder | Mar 100 Benchpressshoulder | Map Elbow | Mar 100 Elbow | Map Hand | Mar 100 Hand | Map Head | Mar 100 Head |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 37 | 58.1399 | 0.0001 | 0.0001 | 0.0001 | 0.0 | 0.0002 | 0.0 | 0.0021 | 0.0028 | 0.0044 | 0.002 | 0.0059 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.009 | 0.0 | 0.005 | 0.0003 | 0.0123 |
No log | 2.0 | 74 | 42.4180 | 0.0038 | 0.0056 | 0.0054 | 0.0001 | 0.0103 | 0.0 | 0.0062 | 0.0156 | 0.0156 | 0.0021 | 0.0218 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0007 | 0.0256 | 0.022 | 0.0679 |
No log | 3.0 | 111 | 34.4996 | 0.015 | 0.0217 | 0.0178 | 0.0002 | 0.0327 | 0.0 | 0.0245 | 0.0383 | 0.0385 | 0.0032 | 0.0552 | 0.0 | -1.0 | -1.0 | 0.0003 | 0.0043 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0031 | 0.0525 | 0.0867 | 0.1741 |
No log | 4.0 | 148 | 29.1792 | 0.0254 | 0.0435 | 0.0239 | 0.0083 | 0.0486 | 0.0014 | 0.0349 | 0.0626 | 0.0626 | 0.0245 | 0.0885 | 0.02 | -1.0 | -1.0 | 0.0004 | 0.0021 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0587 | 0.2044 | 0.0933 | 0.1691 |
No log | 5.0 | 185 | 22.1037 | 0.0867 | 0.1572 | 0.0786 | 0.06 | 0.1234 | 0.0 | 0.0902 | 0.1323 | 0.1324 | 0.1011 | 0.1681 | 0.0 | -1.0 | -1.0 | 0.0022 | 0.0209 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0108 | 0.2576 | 0.4181 | 0.2605 | 0.3444 |
No log | 6.0 | 222 | 18.5807 | 0.1367 | 0.2393 | 0.13 | 0.1254 | 0.1771 | 0.0027 | 0.1285 | 0.2144 | 0.2357 | 0.2282 | 0.3049 | 0.04 | -1.0 | -1.0 | 0.0143 | 0.1235 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0005 | 0.1175 | 0.3634 | 0.5731 | 0.4419 | 0.6 |
No log | 7.0 | 259 | 17.0227 | 0.1642 | 0.2798 | 0.1596 | 0.1853 | 0.2005 | 0.0153 | 0.1531 | 0.2538 | 0.2663 | 0.2964 | 0.3338 | 0.04 | -1.0 | -1.0 | 0.0456 | 0.1674 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0014 | 0.1687 | 0.3894 | 0.5825 | 0.5486 | 0.679 |
No log | 8.0 | 296 | 15.6265 | 0.1849 | 0.3282 | 0.1716 | 0.2236 | 0.2215 | 0.0208 | 0.1801 | 0.2874 | 0.2967 | 0.3501 | 0.3619 | 0.02 | -1.0 | -1.0 | 0.1076 | 0.2984 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0017 | 0.197 | 0.4029 | 0.5838 | 0.5973 | 0.7012 |
No log | 9.0 | 333 | 15.1906 | 0.1871 | 0.3393 | 0.166 | 0.2442 | 0.2201 | 0.0401 | 0.1826 | 0.3077 | 0.3425 | 0.4268 | 0.3931 | 0.1 | -1.0 | -1.0 | 0.1194 | 0.3396 | 0.0 | 0.0 | 0.002 | 0.05 | 0.0071 | 0.3747 | 0.3975 | 0.5638 | 0.5969 | 0.7272 |
No log | 10.0 | 370 | 14.8474 | 0.1954 | 0.3502 | 0.1848 | 0.2464 | 0.2337 | 0.0208 | 0.1818 | 0.2982 | 0.311 | 0.3738 | 0.3728 | 0.02 | -1.0 | -1.0 | 0.1522 | 0.331 | 0.0 | 0.0 | 0.0 | 0.0 | 0.006 | 0.2627 | 0.4073 | 0.565 | 0.6066 | 0.7074 |
Framework versions
- Transformers 4.54.0.dev0
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.2
- Downloads last month
- 8
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for nasiraziz321/rtdetr-r50-bench-finetune
Base model
PekingU/rtdetr_r50vd_coco_o365