relevance-analysis

This model is a fine-tuned version of mdhugol/indonesia-bert-sentiment-classification on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5308
  • Accuracy: 0.8230

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-08
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 41
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 200
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
3.4407 1.7986 500 3.4936 0.2
3.0684 3.5971 1000 3.1423 0.2162
2.7449 5.3957 1500 2.7929 0.2243
2.4066 7.1942 2000 2.4499 0.2459
2.0853 8.9928 2500 2.1284 0.2838
1.8021 10.7914 3000 1.8369 0.3514
1.546 12.5899 3500 1.5842 0.4176
1.3521 14.3885 4000 1.3852 0.4811
1.1889 16.1871 4500 1.2250 0.5392
1.0671 17.9856 5000 1.1067 0.5824
0.9838 19.7842 5500 1.0203 0.6365
0.8825 21.5827 6000 0.9541 0.6757
0.846 23.3813 6500 0.9053 0.7027
0.8263 25.1799 7000 0.8669 0.7284
0.7888 26.9784 7500 0.8360 0.75
0.7516 28.7770 8000 0.8106 0.7608
0.7417 30.5755 8500 0.7894 0.7703
0.7277 32.3741 9000 0.7702 0.7797
0.7217 34.1727 9500 0.7532 0.7878
0.694 35.9712 10000 0.7382 0.7932
0.673 37.7698 10500 0.7249 0.7973
0.6955 39.5683 11000 0.7124 0.7986
0.6544 41.3669 11500 0.7013 0.8027
0.6548 43.1655 12000 0.6906 0.8068
0.6355 44.9640 12500 0.6811 0.8108
0.6386 46.7626 13000 0.6720 0.8122
0.627 48.5612 13500 0.6637 0.8122
0.6199 50.3597 14000 0.6559 0.8122
0.6291 52.1583 14500 0.6487 0.8122
0.5938 53.9568 15000 0.6422 0.8122
0.603 55.7554 15500 0.6358 0.8135
0.594 57.5540 16000 0.6298 0.8162
0.5931 59.3525 16500 0.6243 0.8176
0.5865 61.1511 17000 0.6189 0.8176
0.5797 62.9496 17500 0.6143 0.8176
0.5764 64.7482 18000 0.6099 0.8176
0.5856 66.5468 18500 0.6054 0.8176
0.5513 68.3453 19000 0.6019 0.8176
0.5823 70.1439 19500 0.5978 0.8176
0.5588 71.9424 20000 0.5945 0.8176
0.5571 73.7410 20500 0.5913 0.8189
0.5722 75.5396 21000 0.5882 0.8189
0.5507 77.3381 21500 0.5853 0.8189
0.5524 79.1367 22000 0.5827 0.8189
0.5487 80.9353 22500 0.5800 0.8189
0.545 82.7338 23000 0.5776 0.8189
0.5465 84.5324 23500 0.5754 0.8189
0.5645 86.3309 24000 0.5730 0.8189
0.5195 88.1295 24500 0.5712 0.8189
0.5405 89.9281 25000 0.5692 0.8189
0.5331 91.7266 25500 0.5674 0.8189
0.5384 93.5252 26000 0.5657 0.8189
0.5407 95.3237 26500 0.5639 0.8189
0.5368 97.1223 27000 0.5623 0.8189
0.5254 98.9209 27500 0.5607 0.8189
0.5327 100.7194 28000 0.5592 0.8189
0.5309 102.5180 28500 0.5578 0.8203
0.5309 104.3165 29000 0.5564 0.8203
0.516 106.1151 29500 0.5550 0.8203
0.5325 107.9137 30000 0.5537 0.8203
0.5239 109.7122 30500 0.5525 0.8203
0.5122 111.5108 31000 0.5514 0.8203
0.5309 113.3094 31500 0.5502 0.8203
0.5185 115.1079 32000 0.5491 0.8203
0.5209 116.9065 32500 0.5480 0.8203
0.5101 118.7050 33000 0.5470 0.8203
0.5063 120.5036 33500 0.5461 0.8203
0.5241 122.3022 34000 0.5452 0.8203
0.5056 124.1007 34500 0.5444 0.8203
0.5122 125.8993 35000 0.5435 0.8203
0.5065 127.6978 35500 0.5428 0.8203
0.5142 129.4964 36000 0.5419 0.8189
0.5115 131.2950 36500 0.5412 0.8189
0.5158 133.0935 37000 0.5405 0.8189
0.5076 134.8921 37500 0.5398 0.8203
0.5079 136.6906 38000 0.5393 0.8203
0.5014 138.4892 38500 0.5386 0.8203
0.511 140.2878 39000 0.5380 0.8203
0.5035 142.0863 39500 0.5375 0.8203
0.5008 143.8849 40000 0.5370 0.8203
0.5052 145.6835 40500 0.5365 0.8216
0.508 147.4820 41000 0.5360 0.8216
0.4975 149.2806 41500 0.5356 0.8216
0.5102 151.0791 42000 0.5351 0.8216
0.5092 152.8777 42500 0.5346 0.8216
0.4985 154.6763 43000 0.5343 0.8216
0.4997 156.4748 43500 0.5339 0.8216
0.5058 158.2734 44000 0.5336 0.8216
0.4978 160.0719 44500 0.5333 0.8230
0.4983 161.8705 45000 0.5330 0.8230
0.5097 163.6691 45500 0.5327 0.8230
0.4966 165.4676 46000 0.5325 0.8230
0.5003 167.2662 46500 0.5322 0.8230
0.4967 169.0647 47000 0.5320 0.8230
0.497 170.8633 47500 0.5318 0.8230
0.5108 172.6619 48000 0.5316 0.8230
0.4891 174.4604 48500 0.5315 0.8230
0.4967 176.2590 49000 0.5314 0.8230
0.5029 178.0576 49500 0.5313 0.8230
0.5023 179.8561 50000 0.5312 0.8230
0.5007 181.6547 50500 0.5311 0.8230
0.4966 183.4532 51000 0.5310 0.8230
0.4921 185.2518 51500 0.5310 0.8230
0.4966 187.0504 52000 0.5309 0.8230
0.5056 188.8489 52500 0.5309 0.8230
0.4888 190.6475 53000 0.5309 0.8230
0.4995 192.4460 53500 0.5309 0.8230
0.4976 194.2446 54000 0.5309 0.8230
0.4942 196.0432 54500 0.5308 0.8230
0.4993 197.8417 55000 0.5308 0.8230
0.4988 199.6403 55500 0.5308 0.8230

Framework versions

  • Transformers 4.46.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.1
Downloads last month
35
Safetensors
Model size
124M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for nandapraisal/relevance-analysis

Finetuned
(5)
this model