Whisper Base Vi - Nam Phung
This model is a fine-tuned version of openai/whisper-base on the vlsp2020_vinai_100h dataset. It achieves the following results on the evaluation set:
- Loss: 0.4049
- Wer: 20.3964
To use this model, Let's get here: https://github.com/namphung134/np-asr-vietnamese
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 3500
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.7425 | 0.1492 | 250 | 0.7303 | 34.7993 |
0.6393 | 0.2983 | 500 | 0.6105 | 30.0462 |
0.5636 | 0.4475 | 750 | 0.5404 | 28.1320 |
0.5199 | 0.5967 | 1000 | 0.5043 | 25.5525 |
0.4806 | 0.7458 | 1250 | 0.4756 | 24.4785 |
0.4779 | 0.8950 | 1500 | 0.4581 | 23.8864 |
0.414 | 1.0442 | 1750 | 0.4447 | 22.6037 |
0.3967 | 1.1933 | 2000 | 0.4336 | 21.2506 |
0.3723 | 1.3425 | 2250 | 0.4243 | 21.8426 |
0.3886 | 1.4916 | 2500 | 0.4179 | 21.3605 |
0.3876 | 1.6408 | 2750 | 0.4128 | 20.8728 |
0.3459 | 1.7900 | 3000 | 0.4086 | 20.7572 |
0.3546 | 1.9391 | 3250 | 0.4058 | 20.5909 |
0.3208 | 2.0883 | 3500 | 0.4049 | 20.3964 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.6.0+cu124
- Datasets 3.4.0
- Tokenizers 0.21.1
- Downloads last month
- 131
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for namphungdn134/whisper-base-vi
Base model
openai/whisper-base