Whisper Base Vi - Nam Phung

This model is a fine-tuned version of openai/whisper-base on the vlsp2020_vinai_100h dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4049
  • Wer: 20.3964

To use this model, Let's get here: https://github.com/namphung134/np-asr-vietnamese

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 3500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.7425 0.1492 250 0.7303 34.7993
0.6393 0.2983 500 0.6105 30.0462
0.5636 0.4475 750 0.5404 28.1320
0.5199 0.5967 1000 0.5043 25.5525
0.4806 0.7458 1250 0.4756 24.4785
0.4779 0.8950 1500 0.4581 23.8864
0.414 1.0442 1750 0.4447 22.6037
0.3967 1.1933 2000 0.4336 21.2506
0.3723 1.3425 2250 0.4243 21.8426
0.3886 1.4916 2500 0.4179 21.3605
0.3876 1.6408 2750 0.4128 20.8728
0.3459 1.7900 3000 0.4086 20.7572
0.3546 1.9391 3250 0.4058 20.5909
0.3208 2.0883 3500 0.4049 20.3964

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.4.0
  • Tokenizers 0.21.1
Downloads last month
131
Safetensors
Model size
72.6M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for namphungdn134/whisper-base-vi

Finetuned
(439)
this model

Dataset used to train namphungdn134/whisper-base-vi