wav2vec2-1b-adapters-mer-drL-v1.2

This model is a fine-tuned version of facebook/mms-1b-all on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: nan
  • Wer: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Wer
4.2542 0.02 100 inf 0.6865
1.0706 0.05 200 inf 0.6425
1.054 0.07 300 inf 0.6273
1.131 0.1 400 inf 0.6269
1.091 0.12 500 inf 0.6120
1.209 0.14 600 inf 0.6234
1.032 0.17 700 inf 0.6036
1.0873 0.19 800 inf 0.5984
1.1786 0.21 900 inf 0.6164
1.0065 0.24 1000 inf 0.5984
1.1682 0.26 1100 inf 0.9431
2.716 0.29 1200 inf 1.0
4.6494 0.31 1300 inf 1.0
6.5668 0.33 1400 inf 1.0
8.2033 0.36 1500 inf 0.9997
8.4349 0.38 1600 inf 1.0
8.8253 0.41 1700 inf 1.0000
10.0956 0.43 1800 inf 1.0000
10.1367 0.45 1900 inf 1.0000
10.2369 0.48 2000 inf 1.0000
10.185 0.5 2100 inf 1.0000
10.1101 0.53 2200 inf 1.0000
10.1882 0.55 2300 inf 1.0000
10.1791 0.57 2400 inf 1.0000
10.095 0.6 2500 inf 1.0000
10.0778 0.62 2600 inf 1.0000
10.1407 0.64 2700 inf 1.0000
10.2779 0.67 2800 inf 1.0000
10.0577 0.69 2900 inf 1.0000
10.1342 0.72 3000 inf 1.0000
10.0638 0.74 3100 inf 1.0000
10.19 0.76 3200 inf 1.0000
10.2655 0.79 3300 inf 1.0000
10.1485 0.81 3400 inf 1.0000
10.2903 0.84 3500 inf 1.0000
10.1934 0.86 3600 inf 1.0000
10.038 0.88 3700 inf 1.0000
10.1181 0.91 3800 inf 1.0000
10.1547 0.93 3900 inf 1.0000
10.2849 0.95 4000 inf 1.0000
10.1119 0.98 4100 inf 1.0000
10.2269 1.0 4200 inf 1.0000
10.1069 1.03 4300 inf 1.0000
10.2036 1.05 4400 inf 1.0000
10.1252 1.07 4500 inf 1.0000
10.0869 1.1 4600 inf 1.0000
9.9904 1.12 4700 inf 1.0000
10.1395 1.15 4800 inf 1.0000
10.0352 1.17 4900 inf 1.0000
10.3128 1.19 5000 inf 1.0000
10.1161 1.22 5100 inf 1.0000
10.1318 1.24 5200 inf 1.0000
10.1863 1.27 5300 inf 1.0000
10.1645 1.29 5400 inf 1.0000
10.3267 1.31 5500 inf 1.0000
9.9707 1.34 5600 inf 1.0000
10.2071 1.36 5700 inf 1.0000
10.0865 1.38 5800 inf 1.0000
10.3051 1.41 5900 inf 1.0000
10.203 1.43 6000 inf 1.0000
10.0152 1.46 6100 inf 1.0000
10.1636 1.48 6200 inf 1.0000
10.1885 1.5 6300 inf 1.0000
10.1876 1.53 6400 inf 1.0000
10.1075 1.55 6500 inf 1.0000
10.1307 1.58 6600 inf 1.0000
10.3877 1.6 6700 inf 1.0000
10.1684 1.62 6800 inf 1.0000
10.0601 1.65 6900 inf 1.0000
10.3244 1.67 7000 inf 1.0000
10.2978 1.69 7100 inf 1.0000
10.2394 1.72 7200 inf 1.0000
10.0721 1.74 7300 inf 1.0000
10.1697 1.77 7400 inf 1.0000
10.3378 1.79 7500 inf 1.0000
10.1207 1.81 7600 inf 1.0000
10.1188 1.84 7700 inf 1.0000
10.0966 1.86 7800 inf 1.0000
10.2581 1.89 7900 inf 1.0000
10.219 1.91 8000 inf 1.0000
10.272 1.93 8100 inf 1.0000
10.1932 1.96 8200 inf 1.0000
10.0127 1.98 8300 nan 1.0
0.0 2.01 8400 nan 1.0
0.0 2.03 8500 nan 1.0
0.0 2.05 8600 nan 1.0
0.0 2.08 8700 nan 1.0
0.0 2.1 8800 nan 1.0
0.0 2.12 8900 nan 1.0
0.0 2.15 9000 nan 1.0
0.0 2.17 9100 nan 1.0
0.0 2.2 9200 nan 1.0
0.0 2.22 9300 nan 1.0
0.0 2.24 9400 nan 1.0
0.0 2.27 9500 nan 1.0
0.0 2.29 9600 nan 1.0
0.0 2.32 9700 nan 1.0
0.0 2.34 9800 nan 1.0
0.0 2.36 9900 nan 1.0
0.0 2.39 10000 nan 1.0
0.0 2.41 10100 nan 1.0
0.0 2.43 10200 nan 1.0
0.0 2.46 10300 nan 1.0
0.0 2.48 10400 nan 1.0
0.0 2.51 10500 nan 1.0
0.0 2.53 10600 nan 1.0
0.0 2.55 10700 nan 1.0
0.0 2.58 10800 nan 1.0
0.0 2.6 10900 nan 1.0
0.0 2.63 11000 nan 1.0
0.0 2.65 11100 nan 1.0
0.0 2.67 11200 nan 1.0
0.0 2.7 11300 nan 1.0
0.0 2.72 11400 nan 1.0
0.0 2.75 11500 nan 1.0
0.0 2.77 11600 nan 1.0
0.0 2.79 11700 nan 1.0
0.0 2.82 11800 nan 1.0
0.0 2.84 11900 nan 1.0
0.0 2.86 12000 nan 1.0
0.0 2.89 12100 nan 1.0
0.0 2.91 12200 nan 1.0
0.0 2.94 12300 nan 1.0
0.0 2.96 12400 nan 1.0
0.0 2.98 12500 nan 1.0
0.0 3.01 12600 nan 1.0
0.0 3.03 12700 nan 1.0
0.0 3.06 12800 nan 1.0
0.0 3.08 12900 nan 1.0
0.0 3.1 13000 nan 1.0
0.0 3.13 13100 nan 1.0
0.0 3.15 13200 nan 1.0
0.0 3.17 13300 nan 1.0
0.0 3.2 13400 nan 1.0
0.0 3.22 13500 nan 1.0
0.0 3.25 13600 nan 1.0
0.0 3.27 13700 nan 1.0
0.0 3.29 13800 nan 1.0
0.0 3.32 13900 nan 1.0
0.0 3.34 14000 nan 1.0
0.0 3.37 14100 nan 1.0
0.0 3.39 14200 nan 1.0
0.0 3.41 14300 nan 1.0
0.0 3.44 14400 nan 1.0
0.0 3.46 14500 nan 1.0
0.0 3.49 14600 nan 1.0
0.0 3.51 14700 nan 1.0
0.0 3.53 14800 nan 1.0
0.0 3.56 14900 nan 1.0
0.0 3.58 15000 nan 1.0
0.0 3.6 15100 nan 1.0
0.0 3.63 15200 nan 1.0
0.0 3.65 15300 nan 1.0
0.0 3.68 15400 nan 1.0
0.0 3.7 15500 nan 1.0
0.0 3.72 15600 nan 1.0
0.0 3.75 15700 nan 1.0
0.0 3.77 15800 nan 1.0
0.0 3.8 15900 nan 1.0
0.0 3.82 16000 nan 1.0
0.0 3.84 16100 nan 1.0
0.0 3.87 16200 nan 1.0
0.0 3.89 16300 nan 1.0
0.0 3.92 16400 nan 1.0
0.0 3.94 16500 nan 1.0
0.0 3.96 16600 nan 1.0
0.0 3.99 16700 nan 1.0

Framework versions

  • Transformers 4.32.0.dev0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.3
  • Tokenizers 0.13.3
Downloads last month
44
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for mutisya/wav2vec2-1b-adapters-mer-drL-v1.2

Finetuned
(185)
this model