whisper-uz / README.md
mustafoyev202's picture
End of training
25aef1b verified
metadata
library_name: transformers
language:
  - uz
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_17_0
metrics:
  - wer
model-index:
  - name: Whisper Medium Uzbek
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 17.0
          type: mozilla-foundation/common_voice_17_0
          config: uz
          split: None
          args: 'config: uz, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 38.19985168705969

Whisper Medium Uzbek

This model is a fine-tuned version of openai/whisper-medium on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4148
  • Wer: 38.1999

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 64
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • training_steps: 1500

Training results

Training Loss Epoch Step Validation Loss Wer
0.6553 0.5330 250 0.5830 51.2637
0.3945 1.0661 500 0.4612 41.6914
0.3352 1.5991 750 0.4360 42.0931
0.2028 2.1322 1000 0.4155 38.1133
0.1956 2.6652 1250 0.4081 37.6900
0.1202 3.1983 1500 0.4148 38.1999

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0