segformer-b0-finetuned-ade-512-512_necrosis
This model is a fine-tuned version of nvidia/segformer-b0-finetuned-ade-512-512 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0608
- Mean Iou: 0.8722
- Mean Accuracy: 0.9242
- Overall Accuracy: 0.9813
- Accuracy Background: 0.9949
- Accuracy Necrosis: 0.8211
- Accuracy Root: 0.9564
- Iou Background: 0.9895
- Iou Necrosis: 0.7138
- Iou Root: 0.9132
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Necrosis | Accuracy Root | Iou Background | Iou Necrosis | Iou Root |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.8601 | 0.625 | 20 | 0.8393 | 0.5508 | 0.6494 | 0.8874 | 0.9288 | 0.1647 | 0.8546 | 0.9164 | 0.0706 | 0.6654 |
0.6009 | 1.25 | 40 | 0.5086 | 0.5870 | 0.6565 | 0.9438 | 0.9765 | 0.0084 | 0.9847 | 0.9727 | 0.0078 | 0.7805 |
0.4497 | 1.875 | 60 | 0.3599 | 0.5953 | 0.6654 | 0.9438 | 0.9750 | 0.0350 | 0.9862 | 0.9698 | 0.0333 | 0.7826 |
0.3922 | 2.5 | 80 | 0.2861 | 0.6267 | 0.6957 | 0.9469 | 0.9752 | 0.1275 | 0.9846 | 0.9717 | 0.1183 | 0.7902 |
0.2496 | 3.125 | 100 | 0.2361 | 0.7322 | 0.7918 | 0.9622 | 0.9846 | 0.4183 | 0.9726 | 0.9804 | 0.3765 | 0.8398 |
0.2184 | 3.75 | 120 | 0.1989 | 0.7824 | 0.8508 | 0.9664 | 0.9840 | 0.6063 | 0.9621 | 0.9805 | 0.5121 | 0.8546 |
0.2193 | 4.375 | 140 | 0.1700 | 0.8123 | 0.8765 | 0.9721 | 0.9900 | 0.6864 | 0.9529 | 0.9849 | 0.5768 | 0.8752 |
0.1705 | 5.0 | 160 | 0.1500 | 0.8121 | 0.8731 | 0.9723 | 0.9889 | 0.6684 | 0.9621 | 0.9851 | 0.5749 | 0.8763 |
0.1611 | 5.625 | 180 | 0.1420 | 0.8381 | 0.9065 | 0.9753 | 0.9942 | 0.7919 | 0.9333 | 0.9863 | 0.6416 | 0.8863 |
0.128 | 6.25 | 200 | 0.1293 | 0.8420 | 0.9101 | 0.9763 | 0.9938 | 0.7972 | 0.9393 | 0.9873 | 0.6473 | 0.8914 |
0.1368 | 6.875 | 220 | 0.1115 | 0.8385 | 0.8990 | 0.9763 | 0.9914 | 0.7476 | 0.9581 | 0.9874 | 0.6362 | 0.8920 |
0.1459 | 7.5 | 240 | 0.1074 | 0.8411 | 0.8985 | 0.9771 | 0.9929 | 0.7457 | 0.9568 | 0.9881 | 0.6397 | 0.8955 |
0.1066 | 8.125 | 260 | 0.1026 | 0.8505 | 0.9127 | 0.9776 | 0.9947 | 0.8020 | 0.9415 | 0.9877 | 0.6676 | 0.8963 |
0.0973 | 8.75 | 280 | 0.0959 | 0.8558 | 0.9189 | 0.9787 | 0.9931 | 0.8118 | 0.9517 | 0.9885 | 0.6769 | 0.9020 |
0.1286 | 9.375 | 300 | 0.0883 | 0.8544 | 0.9024 | 0.9792 | 0.9944 | 0.7529 | 0.9598 | 0.9885 | 0.6704 | 0.9043 |
0.0824 | 10.0 | 320 | 0.0872 | 0.8614 | 0.9190 | 0.9796 | 0.9934 | 0.8078 | 0.9559 | 0.9887 | 0.6896 | 0.9058 |
0.083 | 10.625 | 340 | 0.0868 | 0.8641 | 0.9205 | 0.9796 | 0.9955 | 0.8207 | 0.9453 | 0.9882 | 0.6990 | 0.9051 |
0.0794 | 11.25 | 360 | 0.0816 | 0.8612 | 0.9198 | 0.9796 | 0.9943 | 0.8142 | 0.9510 | 0.9889 | 0.6893 | 0.9054 |
0.0979 | 11.875 | 380 | 0.0816 | 0.8575 | 0.9062 | 0.9796 | 0.9929 | 0.7582 | 0.9675 | 0.9888 | 0.6770 | 0.9066 |
0.0734 | 12.5 | 400 | 0.0785 | 0.8584 | 0.9033 | 0.9799 | 0.9949 | 0.7537 | 0.9612 | 0.9889 | 0.6790 | 0.9073 |
0.108 | 13.125 | 420 | 0.0749 | 0.8642 | 0.9161 | 0.9802 | 0.9949 | 0.7983 | 0.9551 | 0.9889 | 0.6954 | 0.9084 |
0.0803 | 13.75 | 440 | 0.0758 | 0.8691 | 0.9265 | 0.9804 | 0.9949 | 0.8359 | 0.9488 | 0.9887 | 0.7099 | 0.9086 |
0.0812 | 14.375 | 460 | 0.0734 | 0.8683 | 0.9235 | 0.9805 | 0.9949 | 0.8238 | 0.9517 | 0.9889 | 0.7067 | 0.9094 |
0.0715 | 15.0 | 480 | 0.0696 | 0.8683 | 0.9239 | 0.9806 | 0.9931 | 0.8180 | 0.9605 | 0.9892 | 0.7054 | 0.9104 |
0.0673 | 15.625 | 500 | 0.0675 | 0.8698 | 0.9275 | 0.9808 | 0.9938 | 0.8328 | 0.9560 | 0.9893 | 0.7091 | 0.9109 |
0.072 | 16.25 | 520 | 0.0696 | 0.8699 | 0.9231 | 0.9809 | 0.9948 | 0.8195 | 0.9550 | 0.9892 | 0.7094 | 0.9112 |
0.0681 | 16.875 | 540 | 0.0696 | 0.8696 | 0.9235 | 0.9806 | 0.9955 | 0.8255 | 0.9496 | 0.9889 | 0.7105 | 0.9096 |
0.0641 | 17.5 | 560 | 0.0671 | 0.8618 | 0.9063 | 0.9805 | 0.9944 | 0.7587 | 0.9657 | 0.9894 | 0.6860 | 0.9101 |
0.0842 | 18.125 | 580 | 0.0681 | 0.8692 | 0.9211 | 0.9808 | 0.9948 | 0.8128 | 0.9558 | 0.9892 | 0.7073 | 0.9111 |
0.0738 | 18.75 | 600 | 0.0661 | 0.8693 | 0.9214 | 0.9809 | 0.9942 | 0.8109 | 0.9591 | 0.9893 | 0.7070 | 0.9116 |
0.0629 | 19.375 | 620 | 0.0640 | 0.8685 | 0.9177 | 0.9810 | 0.9937 | 0.7946 | 0.9648 | 0.9895 | 0.7037 | 0.9122 |
0.064 | 20.0 | 640 | 0.0637 | 0.8705 | 0.9238 | 0.9811 | 0.9936 | 0.8162 | 0.9616 | 0.9896 | 0.7093 | 0.9128 |
0.0599 | 20.625 | 660 | 0.0638 | 0.8704 | 0.9221 | 0.9811 | 0.9950 | 0.8153 | 0.9561 | 0.9894 | 0.7098 | 0.9121 |
0.0645 | 21.25 | 680 | 0.0644 | 0.8715 | 0.9257 | 0.9811 | 0.9939 | 0.8243 | 0.9588 | 0.9894 | 0.7126 | 0.9126 |
0.0843 | 21.875 | 700 | 0.0643 | 0.8670 | 0.9131 | 0.9810 | 0.9949 | 0.7827 | 0.9619 | 0.9895 | 0.6995 | 0.9119 |
0.0578 | 22.5 | 720 | 0.0629 | 0.8716 | 0.9255 | 0.9809 | 0.9958 | 0.8319 | 0.9486 | 0.9890 | 0.7151 | 0.9107 |
0.0586 | 23.125 | 740 | 0.0616 | 0.8681 | 0.9178 | 0.9810 | 0.9937 | 0.7949 | 0.9647 | 0.9896 | 0.7023 | 0.9123 |
0.0678 | 23.75 | 760 | 0.0614 | 0.8732 | 0.9318 | 0.9812 | 0.9944 | 0.8481 | 0.9528 | 0.9895 | 0.7176 | 0.9124 |
0.0757 | 24.375 | 780 | 0.0627 | 0.8680 | 0.9151 | 0.9811 | 0.9949 | 0.7891 | 0.9613 | 0.9896 | 0.7019 | 0.9125 |
0.081 | 25.0 | 800 | 0.0621 | 0.8721 | 0.9248 | 0.9813 | 0.9950 | 0.8242 | 0.9553 | 0.9895 | 0.7138 | 0.9129 |
0.0628 | 25.625 | 820 | 0.0604 | 0.8718 | 0.9239 | 0.9814 | 0.9941 | 0.8173 | 0.9604 | 0.9896 | 0.7121 | 0.9136 |
0.0515 | 26.25 | 840 | 0.0612 | 0.8720 | 0.9233 | 0.9813 | 0.9945 | 0.8162 | 0.9591 | 0.9896 | 0.7131 | 0.9134 |
0.0735 | 26.875 | 860 | 0.0605 | 0.8719 | 0.9224 | 0.9813 | 0.9953 | 0.8159 | 0.9559 | 0.9895 | 0.7132 | 0.9131 |
0.06 | 27.5 | 880 | 0.0610 | 0.8729 | 0.9254 | 0.9814 | 0.9951 | 0.8259 | 0.9551 | 0.9895 | 0.7160 | 0.9133 |
0.0525 | 28.125 | 900 | 0.0610 | 0.8716 | 0.9227 | 0.9813 | 0.9946 | 0.8147 | 0.9588 | 0.9896 | 0.7118 | 0.9134 |
0.0738 | 28.75 | 920 | 0.0610 | 0.8713 | 0.9217 | 0.9813 | 0.9949 | 0.8120 | 0.9584 | 0.9896 | 0.7111 | 0.9133 |
0.0632 | 29.375 | 940 | 0.0606 | 0.8718 | 0.9228 | 0.9813 | 0.9951 | 0.8166 | 0.9566 | 0.9895 | 0.7129 | 0.9131 |
0.0547 | 30.0 | 960 | 0.0608 | 0.8722 | 0.9242 | 0.9813 | 0.9949 | 0.8211 | 0.9564 | 0.9895 | 0.7138 | 0.9132 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.6.0+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0
- Downloads last month
- 7
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for mujerry/segformer-b0-finetuned-ade-512-512_necrosis
Base model
nvidia/segformer-b0-finetuned-ade-512-512