segformer-b0-finetuned-ade-512-512_necrosis

This model is a fine-tuned version of nvidia/segformer-b0-finetuned-ade-512-512 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0608
  • Mean Iou: 0.8722
  • Mean Accuracy: 0.9242
  • Overall Accuracy: 0.9813
  • Accuracy Background: 0.9949
  • Accuracy Necrosis: 0.8211
  • Accuracy Root: 0.9564
  • Iou Background: 0.9895
  • Iou Necrosis: 0.7138
  • Iou Root: 0.9132

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Background Accuracy Necrosis Accuracy Root Iou Background Iou Necrosis Iou Root
0.8601 0.625 20 0.8393 0.5508 0.6494 0.8874 0.9288 0.1647 0.8546 0.9164 0.0706 0.6654
0.6009 1.25 40 0.5086 0.5870 0.6565 0.9438 0.9765 0.0084 0.9847 0.9727 0.0078 0.7805
0.4497 1.875 60 0.3599 0.5953 0.6654 0.9438 0.9750 0.0350 0.9862 0.9698 0.0333 0.7826
0.3922 2.5 80 0.2861 0.6267 0.6957 0.9469 0.9752 0.1275 0.9846 0.9717 0.1183 0.7902
0.2496 3.125 100 0.2361 0.7322 0.7918 0.9622 0.9846 0.4183 0.9726 0.9804 0.3765 0.8398
0.2184 3.75 120 0.1989 0.7824 0.8508 0.9664 0.9840 0.6063 0.9621 0.9805 0.5121 0.8546
0.2193 4.375 140 0.1700 0.8123 0.8765 0.9721 0.9900 0.6864 0.9529 0.9849 0.5768 0.8752
0.1705 5.0 160 0.1500 0.8121 0.8731 0.9723 0.9889 0.6684 0.9621 0.9851 0.5749 0.8763
0.1611 5.625 180 0.1420 0.8381 0.9065 0.9753 0.9942 0.7919 0.9333 0.9863 0.6416 0.8863
0.128 6.25 200 0.1293 0.8420 0.9101 0.9763 0.9938 0.7972 0.9393 0.9873 0.6473 0.8914
0.1368 6.875 220 0.1115 0.8385 0.8990 0.9763 0.9914 0.7476 0.9581 0.9874 0.6362 0.8920
0.1459 7.5 240 0.1074 0.8411 0.8985 0.9771 0.9929 0.7457 0.9568 0.9881 0.6397 0.8955
0.1066 8.125 260 0.1026 0.8505 0.9127 0.9776 0.9947 0.8020 0.9415 0.9877 0.6676 0.8963
0.0973 8.75 280 0.0959 0.8558 0.9189 0.9787 0.9931 0.8118 0.9517 0.9885 0.6769 0.9020
0.1286 9.375 300 0.0883 0.8544 0.9024 0.9792 0.9944 0.7529 0.9598 0.9885 0.6704 0.9043
0.0824 10.0 320 0.0872 0.8614 0.9190 0.9796 0.9934 0.8078 0.9559 0.9887 0.6896 0.9058
0.083 10.625 340 0.0868 0.8641 0.9205 0.9796 0.9955 0.8207 0.9453 0.9882 0.6990 0.9051
0.0794 11.25 360 0.0816 0.8612 0.9198 0.9796 0.9943 0.8142 0.9510 0.9889 0.6893 0.9054
0.0979 11.875 380 0.0816 0.8575 0.9062 0.9796 0.9929 0.7582 0.9675 0.9888 0.6770 0.9066
0.0734 12.5 400 0.0785 0.8584 0.9033 0.9799 0.9949 0.7537 0.9612 0.9889 0.6790 0.9073
0.108 13.125 420 0.0749 0.8642 0.9161 0.9802 0.9949 0.7983 0.9551 0.9889 0.6954 0.9084
0.0803 13.75 440 0.0758 0.8691 0.9265 0.9804 0.9949 0.8359 0.9488 0.9887 0.7099 0.9086
0.0812 14.375 460 0.0734 0.8683 0.9235 0.9805 0.9949 0.8238 0.9517 0.9889 0.7067 0.9094
0.0715 15.0 480 0.0696 0.8683 0.9239 0.9806 0.9931 0.8180 0.9605 0.9892 0.7054 0.9104
0.0673 15.625 500 0.0675 0.8698 0.9275 0.9808 0.9938 0.8328 0.9560 0.9893 0.7091 0.9109
0.072 16.25 520 0.0696 0.8699 0.9231 0.9809 0.9948 0.8195 0.9550 0.9892 0.7094 0.9112
0.0681 16.875 540 0.0696 0.8696 0.9235 0.9806 0.9955 0.8255 0.9496 0.9889 0.7105 0.9096
0.0641 17.5 560 0.0671 0.8618 0.9063 0.9805 0.9944 0.7587 0.9657 0.9894 0.6860 0.9101
0.0842 18.125 580 0.0681 0.8692 0.9211 0.9808 0.9948 0.8128 0.9558 0.9892 0.7073 0.9111
0.0738 18.75 600 0.0661 0.8693 0.9214 0.9809 0.9942 0.8109 0.9591 0.9893 0.7070 0.9116
0.0629 19.375 620 0.0640 0.8685 0.9177 0.9810 0.9937 0.7946 0.9648 0.9895 0.7037 0.9122
0.064 20.0 640 0.0637 0.8705 0.9238 0.9811 0.9936 0.8162 0.9616 0.9896 0.7093 0.9128
0.0599 20.625 660 0.0638 0.8704 0.9221 0.9811 0.9950 0.8153 0.9561 0.9894 0.7098 0.9121
0.0645 21.25 680 0.0644 0.8715 0.9257 0.9811 0.9939 0.8243 0.9588 0.9894 0.7126 0.9126
0.0843 21.875 700 0.0643 0.8670 0.9131 0.9810 0.9949 0.7827 0.9619 0.9895 0.6995 0.9119
0.0578 22.5 720 0.0629 0.8716 0.9255 0.9809 0.9958 0.8319 0.9486 0.9890 0.7151 0.9107
0.0586 23.125 740 0.0616 0.8681 0.9178 0.9810 0.9937 0.7949 0.9647 0.9896 0.7023 0.9123
0.0678 23.75 760 0.0614 0.8732 0.9318 0.9812 0.9944 0.8481 0.9528 0.9895 0.7176 0.9124
0.0757 24.375 780 0.0627 0.8680 0.9151 0.9811 0.9949 0.7891 0.9613 0.9896 0.7019 0.9125
0.081 25.0 800 0.0621 0.8721 0.9248 0.9813 0.9950 0.8242 0.9553 0.9895 0.7138 0.9129
0.0628 25.625 820 0.0604 0.8718 0.9239 0.9814 0.9941 0.8173 0.9604 0.9896 0.7121 0.9136
0.0515 26.25 840 0.0612 0.8720 0.9233 0.9813 0.9945 0.8162 0.9591 0.9896 0.7131 0.9134
0.0735 26.875 860 0.0605 0.8719 0.9224 0.9813 0.9953 0.8159 0.9559 0.9895 0.7132 0.9131
0.06 27.5 880 0.0610 0.8729 0.9254 0.9814 0.9951 0.8259 0.9551 0.9895 0.7160 0.9133
0.0525 28.125 900 0.0610 0.8716 0.9227 0.9813 0.9946 0.8147 0.9588 0.9896 0.7118 0.9134
0.0738 28.75 920 0.0610 0.8713 0.9217 0.9813 0.9949 0.8120 0.9584 0.9896 0.7111 0.9133
0.0632 29.375 940 0.0606 0.8718 0.9228 0.9813 0.9951 0.8166 0.9566 0.9895 0.7129 0.9131
0.0547 30.0 960 0.0608 0.8722 0.9242 0.9813 0.9949 0.8211 0.9564 0.9895 0.7138 0.9132

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0
Downloads last month
7
Safetensors
Model size
3.72M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for mujerry/segformer-b0-finetuned-ade-512-512_necrosis

Finetuned
(44)
this model