whisper-tg / README.md
muhtasham's picture
End of training
a403e2f verified
metadata
library_name: transformers
language:
  - tg
license: apache-2.0
base_model: openai/whisper-small
tags:
  - hf-asr-leaderboard
  - whisper-event
  - generated_from_trainer
datasets:
  - fleurs
metrics:
  - wer
model-index:
  - name: Whisper Tajik
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: CUSTOM
          type: fleurs
          config: tg_tj
          split: None
          args: 'config: tg, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 18.951830443159924

Whisper Tajik

This model is a fine-tuned version of openai/whisper-small on the CUSTOM dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4538
  • Wer: 18.9518

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0245 6.2893 1000 0.3726 20.9634
0.0043 12.5786 2000 0.4167 20.5318
0.0003 18.8679 3000 0.4431 19.2062
0.0002 25.1572 4000 0.4538 18.9518

Framework versions

  • Transformers 4.49.0.dev0
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0