See axolotl config
axolotl version: 0.9.2
base_model: pretrained_models/Spark-TTS-0.5B/LLM
# Automatically upload checkpoint and final model to HF
hub_model_id: muhtasham/spark-llm-finetune-tj
trust_remote_code: true
strict: false
datasets:
- path: data/output_prompt.jsonl
type: completion
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/out
sequence_len: 4098
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
wandb_project: spark-tts
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 4
num_epochs: 50
optimizer: adamw_torch_fused
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 50
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 1
save_steps: 5000
debug:
deepspeed:
weight_decay: 0.0
spark-llm-finetune-tj
This model was trained from scratch on the data/output_prompt.jsonl dataset. It achieves the following results on the evaluation set:
- Loss: 5.2546
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 50.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0088 | 1 | 9.9240 |
5.5236 | 0.9978 | 114 | 5.5667 |
5.0799 | 1.9891 | 228 | 5.3932 |
4.9292 | 2.9803 | 342 | 5.3107 |
4.7729 | 3.9716 | 456 | 5.2529 |
4.7022 | 4.9628 | 570 | 5.2174 |
4.6598 | 5.9540 | 684 | 5.1988 |
4.6176 | 6.9453 | 798 | 5.1833 |
4.5814 | 7.9365 | 912 | 5.1737 |
4.5422 | 8.9278 | 1026 | 5.1687 |
4.506 | 9.9190 | 1140 | 5.1643 |
4.492 | 10.9103 | 1254 | 5.1646 |
4.4605 | 11.9015 | 1368 | 5.1670 |
4.4384 | 12.8928 | 1482 | 5.1699 |
4.4151 | 13.8840 | 1596 | 5.1751 |
4.4053 | 14.8753 | 1710 | 5.1766 |
4.3875 | 15.8665 | 1824 | 5.1807 |
4.3684 | 16.8578 | 1938 | 5.1879 |
4.3624 | 17.8490 | 2052 | 5.1921 |
4.3413 | 18.8403 | 2166 | 5.1983 |
4.3302 | 19.8315 | 2280 | 5.2020 |
4.3179 | 20.8228 | 2394 | 5.2081 |
4.3152 | 21.8140 | 2508 | 5.2157 |
4.306 | 22.8053 | 2622 | 5.2180 |
4.2989 | 23.7965 | 2736 | 5.2243 |
4.2982 | 24.7877 | 2850 | 5.2282 |
4.2862 | 25.7790 | 2964 | 5.2328 |
4.2827 | 26.7702 | 3078 | 5.2339 |
4.2775 | 27.7615 | 3192 | 5.2368 |
4.2802 | 28.7527 | 3306 | 5.2417 |
4.2686 | 29.7440 | 3420 | 5.2434 |
4.2713 | 30.7352 | 3534 | 5.2432 |
4.2689 | 31.7265 | 3648 | 5.2476 |
4.2687 | 32.7177 | 3762 | 5.2481 |
4.2651 | 33.7090 | 3876 | 5.2508 |
4.266 | 34.7002 | 3990 | 5.2509 |
4.2644 | 35.6915 | 4104 | 5.2517 |
4.2626 | 36.6827 | 4218 | 5.2517 |
4.2646 | 37.6740 | 4332 | 5.2525 |
4.2617 | 38.6652 | 4446 | 5.2524 |
4.2603 | 39.6565 | 4560 | 5.2544 |
4.2633 | 40.6477 | 4674 | 5.2537 |
4.2561 | 41.6389 | 4788 | 5.2522 |
4.2612 | 42.6302 | 4902 | 5.2546 |
4.2618 | 43.6214 | 5016 | 5.2530 |
4.2602 | 44.6127 | 5130 | 5.2540 |
4.2619 | 45.6039 | 5244 | 5.2543 |
4.263 | 46.5952 | 5358 | 5.2549 |
4.2625 | 47.5864 | 5472 | 5.2547 |
4.2611 | 48.5777 | 5586 | 5.2545 |
4.2621 | 49.5689 | 5700 | 5.2546 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.7.1+cu126
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- 44
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support