bert_uncased_L-4_H-512_A-8-finetuned-eoir_privacy-longer-finetuned-eoir_privacy-longer30

This model was trained from scratch on the eoir_privacy dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2076
  • Accuracy: 0.9491
  • F1: 0.8838

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
No log 1.0 63 0.2446 0.9426 0.8671
No log 2.0 126 0.2306 0.9412 0.8629
No log 3.0 189 0.2637 0.9448 0.8679
No log 4.0 252 0.2375 0.9455 0.8758
No log 5.0 315 0.2423 0.9440 0.8687
No log 6.0 378 0.2571 0.9455 0.8676
No log 7.0 441 0.2040 0.9469 0.8799
0.0355 8.0 504 0.2096 0.9462 0.8784
0.0355 9.0 567 0.2094 0.9448 0.8736
0.0355 10.0 630 0.2076 0.9491 0.8838

Framework versions

  • Transformers 4.21.1
  • Pytorch 1.12.1+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
20
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Evaluation results