SentenceTransformer based on distilbert/distilroberta-base
This is a sentence-transformers model finetuned from distilbert/distilroberta-base on the sentence-transformers/all-nli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: distilbert/distilroberta-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
"'Go now.'",
'Now go.',
'The door did not budge.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts-dev-768
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.8418 |
spearman_cosine | 0.8486 |
pearson_manhattan | 0.8357 |
spearman_manhattan | 0.8341 |
pearson_euclidean | 0.8378 |
spearman_euclidean | 0.8365 |
pearson_dot | 0.7477 |
spearman_dot | 0.7445 |
pearson_max | 0.8418 |
spearman_max | 0.8486 |
Semantic Similarity
- Dataset:
sts-dev-512
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.8417 |
spearman_cosine | 0.849 |
pearson_manhattan | 0.8348 |
spearman_manhattan | 0.8333 |
pearson_euclidean | 0.837 |
spearman_euclidean | 0.8357 |
pearson_dot | 0.7426 |
spearman_dot | 0.7393 |
pearson_max | 0.8417 |
spearman_max | 0.849 |
Semantic Similarity
- Dataset:
sts-dev-256
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.8368 |
spearman_cosine | 0.8459 |
pearson_manhattan | 0.8283 |
spearman_manhattan | 0.828 |
pearson_euclidean | 0.8304 |
spearman_euclidean | 0.8301 |
pearson_dot | 0.7158 |
spearman_dot | 0.7114 |
pearson_max | 0.8368 |
spearman_max | 0.8459 |
Semantic Similarity
- Dataset:
sts-dev-128
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.8292 |
spearman_cosine | 0.841 |
pearson_manhattan | 0.8205 |
spearman_manhattan | 0.8212 |
pearson_euclidean | 0.8218 |
spearman_euclidean | 0.8223 |
pearson_dot | 0.6737 |
spearman_dot | 0.6705 |
pearson_max | 0.8292 |
spearman_max | 0.841 |
Semantic Similarity
- Dataset:
sts-dev-64
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.8201 |
spearman_cosine | 0.835 |
pearson_manhattan | 0.8028 |
spearman_manhattan | 0.8049 |
pearson_euclidean | 0.8047 |
spearman_euclidean | 0.8064 |
pearson_dot | 0.6172 |
spearman_dot | 0.6177 |
pearson_max | 0.8201 |
spearman_max | 0.835 |
Training Details
Training Dataset
sentence-transformers/all-nli
- Dataset: sentence-transformers/all-nli at d482672
- Size: 557,850 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 7 tokens
- mean: 10.38 tokens
- max: 45 tokens
- min: 6 tokens
- mean: 12.8 tokens
- max: 39 tokens
- min: 6 tokens
- mean: 13.4 tokens
- max: 50 tokens
- Samples:
anchor positive negative A person on a horse jumps over a broken down airplane.
A person is outdoors, on a horse.
A person is at a diner, ordering an omelette.
Children smiling and waving at camera
There are children present
The kids are frowning
A boy is jumping on skateboard in the middle of a red bridge.
The boy does a skateboarding trick.
The boy skates down the sidewalk.
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Evaluation Dataset
sentence-transformers/all-nli
- Dataset: sentence-transformers/all-nli at d482672
- Size: 6,584 evaluation samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 6 tokens
- mean: 18.02 tokens
- max: 66 tokens
- min: 5 tokens
- mean: 9.81 tokens
- max: 29 tokens
- min: 5 tokens
- mean: 10.37 tokens
- max: 29 tokens
- Samples:
anchor positive negative Two women are embracing while holding to go packages.
Two woman are holding packages.
The men are fighting outside a deli.
Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.
Two kids in numbered jerseys wash their hands.
Two kids in jackets walk to school.
A man selling donuts to a customer during a world exhibition event held in the city of Angeles
A man selling donuts to a customer.
A woman drinks her coffee in a small cafe.
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 256per_device_eval_batch_size
: 256num_train_epochs
: 1warmup_ratio
: 0.1bf16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 256per_device_eval_batch_size
: 256per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | sts-dev-128_spearman_cosine | sts-dev-256_spearman_cosine | sts-dev-512_spearman_cosine | sts-dev-64_spearman_cosine | sts-dev-768_spearman_cosine |
---|---|---|---|---|---|---|---|---|
0.0459 | 100 | 19.459 | 8.2665 | 0.7796 | 0.8046 | 0.8114 | 0.8082 | 0.7996 |
0.0917 | 200 | 11.0035 | 7.6606 | 0.7696 | 0.7971 | 0.8083 | 0.7987 | 0.7933 |
0.1376 | 300 | 9.7634 | 6.4912 | 0.7992 | 0.8126 | 0.8190 | 0.8062 | 0.8127 |
0.1835 | 400 | 9.1103 | 5.9960 | 0.8081 | 0.8229 | 0.8263 | 0.8136 | 0.8224 |
0.2294 | 500 | 8.7099 | 5.9388 | 0.7984 | 0.8138 | 0.8189 | 0.8021 | 0.8166 |
0.2752 | 600 | 8.1215 | 5.6457 | 0.7963 | 0.8104 | 0.8149 | 0.8057 | 0.8121 |
0.3211 | 700 | 7.7441 | 5.4632 | 0.7937 | 0.8153 | 0.8199 | 0.8119 | 0.8150 |
0.3670 | 800 | 7.4849 | 5.1815 | 0.8076 | 0.8208 | 0.8238 | 0.8152 | 0.8172 |
0.4128 | 900 | 7.1386 | 5.1419 | 0.8035 | 0.8181 | 0.8235 | 0.8139 | 0.8189 |
0.4587 | 1000 | 6.839 | 5.1548 | 0.7943 | 0.8118 | 0.8172 | 0.8054 | 0.8153 |
0.5046 | 1100 | 6.6597 | 5.1015 | 0.7895 | 0.8066 | 0.8119 | 0.8059 | 0.8063 |
0.5505 | 1200 | 6.7172 | 5.3707 | 0.7753 | 0.7987 | 0.8068 | 0.7989 | 0.8014 |
0.5963 | 1300 | 6.6514 | 4.9368 | 0.7904 | 0.8086 | 0.8139 | 0.8051 | 0.8083 |
0.6422 | 1400 | 6.5573 | 5.0196 | 0.7882 | 0.8066 | 0.8128 | 0.8035 | 0.8091 |
0.6881 | 1500 | 6.7596 | 4.9381 | 0.7960 | 0.8120 | 0.8169 | 0.8058 | 0.8140 |
0.7339 | 1600 | 6.2686 | 4.4018 | 0.8136 | 0.8245 | 0.8268 | 0.8160 | 0.8244 |
0.7798 | 1700 | 3.4607 | 3.8397 | 0.8415 | 0.8466 | 0.8502 | 0.8345 | 0.8503 |
0.8257 | 1800 | 2.6912 | 3.7914 | 0.8415 | 0.8459 | 0.8493 | 0.8350 | 0.8488 |
0.8716 | 1900 | 2.4958 | 3.7752 | 0.8402 | 0.8450 | 0.8484 | 0.8340 | 0.8478 |
0.9174 | 2000 | 2.3413 | 3.7997 | 0.8410 | 0.8459 | 0.8490 | 0.8350 | 0.8486 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.0
- Transformers: 4.41.1
- PyTorch: 2.3.0+cu121
- Accelerate: 0.30.1
- Datasets: 2.19.2
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 7
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for mrm8488/distilroberta-base-ft-allnli-matryoshka-768-64-1e-256bs
Base model
distilbert/distilroberta-baseEvaluation results
- Pearson Cosine on sts dev 768self-reported0.842
- Spearman Cosine on sts dev 768self-reported0.849
- Pearson Manhattan on sts dev 768self-reported0.836
- Spearman Manhattan on sts dev 768self-reported0.834
- Pearson Euclidean on sts dev 768self-reported0.838
- Spearman Euclidean on sts dev 768self-reported0.836
- Pearson Dot on sts dev 768self-reported0.748
- Spearman Dot on sts dev 768self-reported0.744
- Pearson Max on sts dev 768self-reported0.842
- Spearman Max on sts dev 768self-reported0.849