File size: 2,504 Bytes
3085d51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
library_name: transformers
license: apache-2.0
base_model: facebook/detr-resnet-50-dc5
tags:
- generated_from_trainer
model-index:
- name: detr-resnet-50-dc5-fashionpedia-finetuned
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# detr-resnet-50-dc5-fashionpedia-finetuned

This model is a fine-tuned version of [facebook/detr-resnet-50-dc5](https://huggingface.co/facebook/detr-resnet-50-dc5) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.2904

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- training_steps: 1000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 4.7281        | 0.0438 | 50   | 4.3705          |
| 3.9353        | 0.0876 | 100  | 4.0499          |
| 4.5369        | 0.1315 | 150  | 3.8890          |
| 3.9156        | 0.1753 | 200  | 3.7630          |
| 3.6006        | 0.2191 | 250  | 3.6861          |
| 3.6562        | 0.2629 | 300  | 3.6110          |
| 3.7636        | 0.3067 | 350  | 3.5906          |
| 4.0293        | 0.3506 | 400  | 3.5405          |
| 3.533         | 0.3944 | 450  | 3.4906          |
| 3.1302        | 0.4382 | 500  | 3.4249          |
| 3.8257        | 0.4820 | 550  | 3.3910          |
| 2.9622        | 0.5259 | 600  | 3.3622          |
| 3.9213        | 0.5697 | 650  | 3.3310          |
| 4.4062        | 0.6135 | 700  | 3.3303          |
| 4.3076        | 0.6573 | 750  | 3.3105          |
| 4.0868        | 0.7011 | 800  | 3.3040          |
| 4.0639        | 0.7450 | 850  | 3.3076          |
| 4.7454        | 0.7888 | 900  | 3.2996          |
| 4.3044        | 0.8326 | 950  | 3.2935          |
| 3.9519        | 0.8764 | 1000 | 3.2904          |


### Framework versions

- Transformers 4.51.0
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1