mreraser commited on
Commit
3085d51
·
verified ·
1 Parent(s): c5dfdbf

End of training

Browse files
Files changed (1) hide show
  1. README.md +78 -0
README.md ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: facebook/detr-resnet-50-dc5
5
+ tags:
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: detr-resnet-50-dc5-fashionpedia-finetuned
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # detr-resnet-50-dc5-fashionpedia-finetuned
16
+
17
+ This model is a fine-tuned version of [facebook/detr-resnet-50-dc5](https://huggingface.co/facebook/detr-resnet-50-dc5) on an unknown dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 3.2904
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 1e-05
39
+ - train_batch_size: 4
40
+ - eval_batch_size: 4
41
+ - seed: 42
42
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
43
+ - lr_scheduler_type: linear
44
+ - training_steps: 1000
45
+ - mixed_precision_training: Native AMP
46
+
47
+ ### Training results
48
+
49
+ | Training Loss | Epoch | Step | Validation Loss |
50
+ |:-------------:|:------:|:----:|:---------------:|
51
+ | 4.7281 | 0.0438 | 50 | 4.3705 |
52
+ | 3.9353 | 0.0876 | 100 | 4.0499 |
53
+ | 4.5369 | 0.1315 | 150 | 3.8890 |
54
+ | 3.9156 | 0.1753 | 200 | 3.7630 |
55
+ | 3.6006 | 0.2191 | 250 | 3.6861 |
56
+ | 3.6562 | 0.2629 | 300 | 3.6110 |
57
+ | 3.7636 | 0.3067 | 350 | 3.5906 |
58
+ | 4.0293 | 0.3506 | 400 | 3.5405 |
59
+ | 3.533 | 0.3944 | 450 | 3.4906 |
60
+ | 3.1302 | 0.4382 | 500 | 3.4249 |
61
+ | 3.8257 | 0.4820 | 550 | 3.3910 |
62
+ | 2.9622 | 0.5259 | 600 | 3.3622 |
63
+ | 3.9213 | 0.5697 | 650 | 3.3310 |
64
+ | 4.4062 | 0.6135 | 700 | 3.3303 |
65
+ | 4.3076 | 0.6573 | 750 | 3.3105 |
66
+ | 4.0868 | 0.7011 | 800 | 3.3040 |
67
+ | 4.0639 | 0.7450 | 850 | 3.3076 |
68
+ | 4.7454 | 0.7888 | 900 | 3.2996 |
69
+ | 4.3044 | 0.8326 | 950 | 3.2935 |
70
+ | 3.9519 | 0.8764 | 1000 | 3.2904 |
71
+
72
+
73
+ ### Framework versions
74
+
75
+ - Transformers 4.51.0
76
+ - Pytorch 2.6.0+cu124
77
+ - Datasets 3.5.0
78
+ - Tokenizers 0.21.1