mradermacher's picture
auto-patch README.md
0e4a0bb verified
|
raw
history blame
5.22 kB
---
base_model: allura-org/Q3-30B-A3B-Designant
datasets:
- PygmalionAI/PIPPA
- Alfitaria/nemotron-ultra-reasoning-synthkink
- PocketDoc/Dans-Prosemaxx-Gutenberg
- FreedomIntelligence/Medical-R1-Distill-Data
- cognitivecomputations/SystemChat-2.0
- allenai/tulu-3-sft-personas-instruction-following
- kalomaze/Opus_Instruct_25k
- simplescaling/s1K-claude-3-7-sonnet
- ai2-adapt-dev/flan_v2_converted
- grimulkan/theory-of-mind
- grimulkan/physical-reasoning
- nvidia/HelpSteer3
- nbeerbower/gutenberg2-dpo
- nbeerbower/gutenberg-moderne-dpo
- nbeerbower/Purpura-DPO
- antiven0m/physical-reasoning-dpo
- allenai/tulu-3-IF-augmented-on-policy-70b
- NobodyExistsOnTheInternet/system-message-DPO
language:
- en
library_name: transformers
mradermacher:
readme_rev: 1
quantized_by: mradermacher
tags:
- mergekit
- axolotl
- unsloth
- roleplay
- conversational
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: nicoboss -->
weighted/imatrix quants of https://huggingface.co/allura-org/Q3-30B-A3B-Designant
<!-- provided-files -->
***For a convenient overview and download list, visit our [model page for this model](https://hf.tst.eu/model#Q3-30B-A3B-Designant-i1-GGUF).***
static quants are available at https://huggingface.co/mradermacher/Q3-30B-A3B-Designant-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Q3-30B-A3B-Designant-i1-GGUF/resolve/main/Q3-30B-A3B-Designant.i1-Q2_K.gguf) | i1-Q2_K | 11.4 | IQ3_XXS probably better |
| [GGUF](https://huggingface.co/mradermacher/Q3-30B-A3B-Designant-i1-GGUF/resolve/main/Q3-30B-A3B-Designant.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 11.9 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Q3-30B-A3B-Designant-i1-GGUF/resolve/main/Q3-30B-A3B-Designant.i1-IQ3_XS.gguf) | i1-IQ3_XS | 12.7 | |
| [GGUF](https://huggingface.co/mradermacher/Q3-30B-A3B-Designant-i1-GGUF/resolve/main/Q3-30B-A3B-Designant.i1-Q3_K_S.gguf) | i1-Q3_K_S | 13.4 | IQ3_XS probably better |
| [GGUF](https://huggingface.co/mradermacher/Q3-30B-A3B-Designant-i1-GGUF/resolve/main/Q3-30B-A3B-Designant.i1-IQ3_S.gguf) | i1-IQ3_S | 13.4 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/Q3-30B-A3B-Designant-i1-GGUF/resolve/main/Q3-30B-A3B-Designant.i1-IQ3_M.gguf) | i1-IQ3_M | 13.6 | |
| [GGUF](https://huggingface.co/mradermacher/Q3-30B-A3B-Designant-i1-GGUF/resolve/main/Q3-30B-A3B-Designant.i1-Q3_K_M.gguf) | i1-Q3_K_M | 14.8 | IQ3_S probably better |
| [GGUF](https://huggingface.co/mradermacher/Q3-30B-A3B-Designant-i1-GGUF/resolve/main/Q3-30B-A3B-Designant.i1-Q3_K_L.gguf) | i1-Q3_K_L | 16.0 | IQ3_M probably better |
| [GGUF](https://huggingface.co/mradermacher/Q3-30B-A3B-Designant-i1-GGUF/resolve/main/Q3-30B-A3B-Designant.i1-IQ4_XS.gguf) | i1-IQ4_XS | 16.5 | |
| [GGUF](https://huggingface.co/mradermacher/Q3-30B-A3B-Designant-i1-GGUF/resolve/main/Q3-30B-A3B-Designant.i1-Q4_0.gguf) | i1-Q4_0 | 17.5 | fast, low quality |
| [GGUF](https://huggingface.co/mradermacher/Q3-30B-A3B-Designant-i1-GGUF/resolve/main/Q3-30B-A3B-Designant.i1-Q4_K_S.gguf) | i1-Q4_K_S | 17.6 | optimal size/speed/quality |
| [GGUF](https://huggingface.co/mradermacher/Q3-30B-A3B-Designant-i1-GGUF/resolve/main/Q3-30B-A3B-Designant.i1-Q4_K_M.gguf) | i1-Q4_K_M | 18.7 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Q3-30B-A3B-Designant-i1-GGUF/resolve/main/Q3-30B-A3B-Designant.i1-Q4_1.gguf) | i1-Q4_1 | 19.3 | |
| [GGUF](https://huggingface.co/mradermacher/Q3-30B-A3B-Designant-i1-GGUF/resolve/main/Q3-30B-A3B-Designant.i1-Q5_K_S.gguf) | i1-Q5_K_S | 21.2 | |
| [GGUF](https://huggingface.co/mradermacher/Q3-30B-A3B-Designant-i1-GGUF/resolve/main/Q3-30B-A3B-Designant.i1-Q5_K_M.gguf) | i1-Q5_K_M | 21.8 | |
| [GGUF](https://huggingface.co/mradermacher/Q3-30B-A3B-Designant-i1-GGUF/resolve/main/Q3-30B-A3B-Designant.i1-Q6_K.gguf) | i1-Q6_K | 25.2 | practically like static Q6_K |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):
![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
<!-- end -->