|
--- |
|
license: apache-2.0 |
|
tags: |
|
- llm |
|
- mozihe |
|
- agv |
|
- defect-detection |
|
- chinese |
|
- english |
|
- transformers |
|
- ollama |
|
model_name: agv_llm |
|
base_model: meta-llama/Llama-3.1-8B |
|
library_name: transformers |
|
--- |
|
|
|
# 📄 AGV-LLM |
|
|
|
> **Small enough to self-host, smart enough to 写巡检报告,分析缺陷数据** |
|
> 8 B bilingual model fine-tuned for **tunnel-defect description** & **work-order drafting**. |
|
> Works in both **Transformers** and **Ollama**. |
|
|
|
--- |
|
|
|
## ✨ Highlights |
|
| Feature | Details | |
|
| ------- | ------- | |
|
| 🔧 **Domain-specific** | 56 K 巡检对话 / 工单指令数据 / 数据分析 | |
|
| 🧑🏫 **LoRA fine-tuned** | QLoRA-NF4, Rank 8, α = 16 | |
|
| 🈶 **Bilingual** | 中文 ↔ English | |
|
| ⚡ **Fast** | ~15 tok/s on RTX 4090 (fp16) | |
|
| 📦 **Drop-in** | `AutoModelForCausalLM` **or** `ollama pull mozihe/agv_llm` | |
|
|
|
--- |
|
|
|
## 🛠️ Usage |
|
|
|
### Transformers |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import torch, textwrap |
|
|
|
tok = AutoTokenizer.from_pretrained("mozihe/agv_llm") |
|
model = AutoModelForCausalLM.from_pretrained( |
|
"mozihe/agv_llm", torch_dtype=torch.float16, device_map="auto" |
|
) |
|
|
|
prompt = ( |
|
"请根据以下检测框信息,生成缺陷描述和整改建议:\\n" |
|
"位置:x=12.3,y=1.2,z=7.8\\n种类:裂缝\\n置信度:0.87" |
|
) |
|
inputs = tok(prompt, return_tensors="pt").to(model.device) |
|
out = model.generate(**inputs, max_new_tokens=256, temperature=0.3) |
|
print(textwrap.fill(tok.decode(out[0], skip_special_tokens=True), 80)) |
|
``` |
|
|
|
### Ollama |
|
|
|
|
|
1. 构建本地模型并命名: |
|
|
|
```bash |
|
ollama create agv_llm -f Modelfile |
|
``` |
|
|
|
2. 运行: |
|
|
|
``` |
|
ollama run agv_llm |
|
``` |
|
|
|
> 说明 |
|
> - `ADAPTER` 行既支持远程 Hugging Face 路径,也支持 `file://` 本地 .safetensors。 |
|
> - 更多 Modelfile 指令见 <https://github.com/ollama/ollama/blob/main/docs/modelfile.md> |
|
--- |
|
|
|
## 📚 Training Details |
|
| Item | Value | |
|
| ---- | ----- | |
|
| Base | Llama-3.1-8B | |
|
| Method | QLoRA (bitsandbytes NF4) | |
|
| Steps | 25 epochs | |
|
| LR / Scheduler | 1e-4 / cosine | |
|
| Context | 4 096 tokens | |
|
| Precision | bfloat16 | |
|
| Hardware | 4 × A100-80 GB | |
|
|
|
--- |
|
|
|
## ✅ Intended Use |
|
* YOLO 检出 → 结构化缺陷描述 |
|
* 生成整改建议 / 工单标题 / 优先级 |
|
* 巡检知识库问答(RAG + Ollama) |
|
|
|
### ❌ Out-of-scope |
|
* 医疗 / 法律结论 |
|
* 任何未经人工复核的安全决策 |
|
|
|
--- |
|
|
|
## ⚠️ Limitations |
|
* 8 B 参数 ≠ GPT-4 级别推理深度 |
|
* 训练域集中在隧道场景,泛化到其他土木结构有限 |
|
* 多语种(非中英)支持较弱 |
|
|
|
--- |
|
|
|
## 📄 Citation |
|
|
|
```text |
|
@misc{mozihe2025agvllm, |
|
title = {AGV-LLM: A Domain LLM for Tunnel Inspection}, |
|
author = {Zhu, Junheng}, |
|
year = {2025}, |
|
url = {https://huggingface.co/mozihe/agv_llm} |
|
} |
|
``` |
|
|
|
--- |
|
|
|
## 📝 License |
|
Apache 2.0 — 商用、私有部署皆可,保留版权与许可证即可。 |
|
若本模型帮你省掉一次组会汇报(不包ppt),欢迎 ⭐! |
|
|