Edit model card

Visualize in Weights & Biases

segformer-b1-finetuned-segments-pv_v1_normalized_p100

This model is a fine-tuned version of nvidia/segformer-b1-finetuned-ade-512-512 on the mouadenna/satellite_PV_dataset_train_test_v1 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0092
  • Mean Iou: 0.8705
  • Precision: 0.9201

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Mean Iou Precision
0.0078 1.0 3666 0.0068 0.8054 0.9187
0.0029 2.0 7332 0.0058 0.8298 0.8778
0.002 3.0 10998 0.0058 0.8274 0.8961
0.0013 4.0 14664 0.0060 0.8388 0.8774
0.0 5.0 18330 0.0055 0.8405 0.8901
0.0059 6.0 21996 0.0050 0.8547 0.9004
0.0048 7.0 25662 0.0060 0.8364 0.8668
0.0 8.0 29328 0.0063 0.8278 0.8776
0.0031 9.0 32994 0.0060 0.8547 0.9188
0.0017 10.0 36660 0.0061 0.8489 0.9105
0.0029 11.0 40326 0.0058 0.8572 0.9066
0.0 12.0 43992 0.0059 0.8525 0.9105
0.0031 13.0 47658 0.0057 0.8514 0.9035
0.0012 14.0 51324 0.0056 0.8567 0.9058
0.0042 15.0 54990 0.0058 0.8463 0.8898
0.0026 16.0 58656 0.0067 0.8607 0.9196
0.0012 17.0 62322 0.0050 0.8632 0.9224
0.0031 18.0 65988 0.0066 0.8404 0.9155
0.0018 19.0 69654 0.0059 0.8598 0.9115
0.002 20.0 73320 0.0065 0.8561 0.9210
0.0033 21.0 76986 0.0070 0.8580 0.9118
0.0014 22.0 80652 0.0066 0.8597 0.9306
0.0 23.0 84318 0.0066 0.8623 0.9014
0.0 24.0 87984 0.0062 0.8709 0.9217
0.0022 25.0 91650 0.0067 0.8644 0.9204
0.0013 26.0 95316 0.0063 0.8680 0.9214
0.0015 27.0 98982 0.0073 0.8520 0.8918
0.0 28.0 102648 0.0071 0.8674 0.9144
0.0015 29.0 106314 0.0069 0.8716 0.9261
0.0 30.0 109980 0.0068 0.8715 0.9246
0.0012 31.0 113646 0.0073 0.8682 0.9128
0.0009 32.0 117312 0.0071 0.8717 0.9260
0.0022 33.0 120978 0.0071 0.8715 0.9172
0.0019 34.0 124644 0.0075 0.8674 0.9127
0.0 35.0 128310 0.0078 0.8660 0.9140
0.0009 36.0 131976 0.0079 0.8720 0.9214
0.0007 37.0 135642 0.0087 0.8689 0.9206
0.0014 38.0 139308 0.0077 0.8697 0.9161
0.0 39.0 142974 0.0091 0.8682 0.9243
0.0025 40.0 146640 0.0091 0.8660 0.9161
0.0019 41.0 150306 0.0089 0.8722 0.9190
0.0009 42.0 153972 0.0087 0.8727 0.9233
0.0017 43.0 157638 0.0091 0.8721 0.9196
0.0 44.0 161304 0.0093 0.8737 0.9181
0.0012 45.0 164970 0.0093 0.8727 0.9237
0.0 46.0 168636 0.0094 0.8724 0.9230
0.0005 47.0 172302 0.0102 0.8675 0.9137
0.0 48.0 175968 0.0094 0.8631 0.9066
0.0009 49.0 179634 0.0103 0.8700 0.9165
0.0008 50.0 183300 0.0092 0.8705 0.9201

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.1.2
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
6
Safetensors
Model size
13.7M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for mouadenna/segformer-b1-finetuned-segments-pv_v1_normalized_p100

Finetuned
(18)
this model