|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- motexture/cData |
|
language: |
|
- en |
|
- it |
|
- es |
|
base_model: |
|
- meta-llama/Llama-3.2-3B-Instruct |
|
pipeline_tag: text-generation |
|
tags: |
|
- coding |
|
- coder |
|
- model |
|
- llama |
|
--- |
|
|
|
# LlamaXCoder-3.2-3B-Instruct |
|
|
|
## Introduction |
|
|
|
LlamaXCoder-3.2-3B-Instruct is a fine-tuned version of meta-llama/Llama-3.2-3B-Instruct, trained on the cData coding dataset to improve its reasoning and coding ability. |
|
|
|
## Quickstart |
|
|
|
Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents. |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
device = "cuda" # the device to load the model onto |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
"motexture/LlamaXCoder-3.2-3B-Instruct", |
|
torch_dtype="auto", |
|
device_map="auto" |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained("motexture/LlamaXCoder-3.2-3B-Instruct") |
|
|
|
prompt = "Write a C++ program that prints Hello World!" |
|
messages = [ |
|
{"role": "system", "content": "You are a helpful assistant."}, |
|
{"role": "user", "content": prompt} |
|
] |
|
text = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
model_inputs = tokenizer([text], return_tensors="pt").to(device) |
|
|
|
generated_ids = model.generate( |
|
model_inputs.input_ids, |
|
max_new_tokens=4096, |
|
do_sample=True, |
|
temperature=0.3 |
|
) |
|
generated_ids = [ |
|
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) |
|
] |
|
|
|
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
``` |
|
|
|
## License |
|
|
|
[Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0) |