moshew's picture
End of training
12ae20e
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- augmented_glue_sst2
metrics:
- accuracy
model-index:
- name: miny-bert-aug-sst2-distilled
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: augmented_glue_sst2
type: augmented_glue_sst2
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9128440366972477
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# miny-bert-aug-sst2-distilled
This model is a fine-tuned version of [google/bert_uncased_L-4_H-256_A-4](https://huggingface.co/google/bert_uncased_L-4_H-256_A-4) on the augmented_glue_sst2 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2643
- Accuracy: 0.9128
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 33
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 7
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.602 | 1.0 | 6227 | 0.3389 | 0.9186 |
| 0.4195 | 2.0 | 12454 | 0.2989 | 0.9151 |
| 0.3644 | 3.0 | 18681 | 0.2794 | 0.9117 |
| 0.3304 | 4.0 | 24908 | 0.2793 | 0.9106 |
| 0.3066 | 5.0 | 31135 | 0.2659 | 0.9186 |
| 0.2881 | 6.0 | 37362 | 0.2668 | 0.9140 |
| 0.2754 | 7.0 | 43589 | 0.2643 | 0.9128 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.0